论文下载:IEEE Xplore Full-Text PDF:https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9520398
或者(免费):
https://download.csdn.net/download/qq_20481015/25641401
摘要:
近年来,基于深度学习(DL)的自动调制分类(AMC)方法得到了快速发展,其性能优于传统的分类方法。为了干扰的基于深度学习的AMC分类器,在本文中,我们提出了一种对抗性攻击方法来生成伪信号,以欺骗基于DL的分类器。首先,定义了视觉差异性和伪信号可恢复性的约束条件。其次,提出了少量数据点攻击器(FDPA)&#x