考研高数——牛顿-莱布尼茨公式(N-L公式)的证明

即使证明课本定理一直是考研数学的争议点,但是 32 年来高数课本定理的证明已经考得差不多了,其中牛顿莱布尼茨公式: ∫ a b f ( x ) d x = F ( b ) − F ( a ) \int_a^b f(x) \mathrm{d}x = F(b) - F(a) abf(x)dx=F(b)F(a) 便是没有考到的其中之一。

证明: ∫ a b f ( x ) d x = F ( b ) − F ( a ) \int_a^b f(x) \mathrm{d}x = F(b) - F(a) abf(x)dx=F(b)F(a), 其中 F ( x ) 为 f ( x ) F(x) 为 f(x) F(x)f(x) 的原函数。

【证明】1

可知: F ( x ) = ∫ a x f ( t ) d t + C F(x) = \int_a^x f(t) \mathrm{d}t + C F(x)=axf(t)dt+C,其中, C C C为任意常数,则有:
F ( a ) = ∫ a a f ( t ) d t + C = C F(a) = \int_a^a f(t) \mathrm{d}t + C = C F(a)=aaf(t)dt+C=C

F ( b ) = ∫ a b f ( t ) d t + C F(b) = \int_a^b f(t) \mathrm{d}t + C F(b)=abf(t)dt+C

故, F ( b ) − F ( a ) = ∫ a b f ( t ) d t F(b) - F(a) = \int_a^b f(t) \mathrm{d}t F(b)F(a)=abf(t)dt

即:

F ( b ) − F ( a ) = ∫ a b f ( x ) d x F(b) - F(a) = \int_a^b f(x) \mathrm{d}x F(b)F(a)=abf(x)dx

证毕。

证明定理的争议在于在证明的过程中可不可以使用其他定理,比如我证明这道题的前提便是:“可知: F ( x ) = ∫ a x f ( t ) d t + C F(x) = \int_a^x f(t) \mathrm{d}t + C F(x)=axf(t)dt+C ”,所以 F ′ ( x ) = f ( x ) F'(x) = f(x) F(x)=f(x)。但这个前提是否也需要证明,便是争议的地方。那末,我们也不妨证明一下:

F ( x ) = ∫ a x f ( t ) d t + C F(x) = \int_a^x f(t) \mathrm{d}t + C F(x)=axf(t)dt+C,证明: F ′ ( x ) = f ( x ) F'(x) = f(x) F(x)=f(x)

【证明】2

根据导数定义:
F ′ ( x ) = lim ⁡ Δ x → 0 F ( x + Δ x ) − F ( x ) Δ x F'(x) = \lim_{\Delta x \to 0} \frac{F(x+\Delta x) - F(x)}{\Delta x} F(x)=Δx0limΔxF(x+Δx)F(x)

= lim ⁡ Δ x → 0 ∫ a x + Δ x f ( t ) d t − ∫ a x f ( t ) d t Δ x =\lim_{\Delta x \to 0} \frac{\int_a^{x+\Delta x}f(t) \mathrm{d}t - \int_a^xf(t)\mathrm{d}t}{\Delta x} =Δx0limΔxax+Δxf(t)dtaxf(t)dt

= lim ⁡ Δ x → 0 ∫ x a f ( t ) d t + ∫ a x + Δ x f ( t ) d t Δ x =\lim_{\Delta x \to 0} \frac{\int_x^af(t) \mathrm{d}t + \int_a^{x+\Delta x}f(t)\mathrm{d}t}{\Delta x} =Δx0limΔxxaf(t)dt+ax+Δxf(t)dt

= lim ⁡ Δ x → 0 ∫ x x + Δ x f ( t ) d t Δ x =\lim_{\Delta x \to 0} \frac{\int_x^{x+\Delta x}f(t)\mathrm{d}t}{\Delta x} =Δx0limΔxxx+Δxf(t)dt

根据积分中值定理3 ∃ ξ ∈ ( x , x + Δ x ) \exists \xi \in (x, x+\Delta x) ξ(x,x+Δx),使得:
∫ x x + Δ x f ( t ) d t = f ( ξ ) ⋅ ( x + Δ x − x ) = f ( ξ ) ⋅ Δ x \int_x^{x+\Delta x}f(t)\mathrm{d}t = f(\xi)\cdot (x+\Delta x - x) = f(\xi)\cdot \Delta x xx+Δxf(t)dt=f(ξ)(x+Δxx)=f(ξ)Δx

故,
F ′ ( x ) = lim ⁡ Δ x → 0 f ( ξ ) ⋅ Δ x Δ x = lim ⁡ Δ x → 0 f ( ξ ) F'(x) = \lim_{\Delta x \to 0} \frac{f(\xi)\cdot \Delta x}{\Delta x} = \lim_{\Delta x \to 0} f(\xi) F(x)=Δx0limΔxf(ξ)Δx=Δx0limf(ξ)

Δ x → 0 \Delta x \to 0 Δx0 时, ξ → x \xi \to x ξx,故
F ′ ( x ) = lim ⁡ Δ x → 0 f ( ξ ) = f ( x ) F'(x) = \lim_{\Delta x \to 0}f(\xi) = f(x) F(x)=Δx0limf(ξ)=f(x)

证毕。

那末,问题再次出现了,我们还要证明积分中值定理


  1. 参考《牛顿-莱布尼茨公式的详细证明↩︎

  2. LaText语法参考《LaTeX 各种命令,符号↩︎

  3. 积分中值定理的证明↩︎

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Skr.B

WUHOOO~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值