考研高数——积分中值定理证明

本文深入探讨了积分中值定理,通过两种不同的证明方法,详细解释了定理成立的条件及其数学意义。首先,利用最值定理和介值定理证明了存在性;其次,借助原函数存在定理和拉格朗日中值定理提供了另一种证明思路。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

积分中值定理1:设 f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b] 上连续,则 ∃ ξ ∈ [ a , b ] \exists \xi \in [a, b] ξ[a,b],使得:
∫ a b f ( x ) d x = f ( ξ ) ( b − a ) \int_a^b f(x) \mathrm{d}x = f(\xi)(b-a) abf(x)dx=f(ξ)(ba)

【证明】

  • 解法一:

原式 ⇒ \Rightarrow
f ( ξ ) = ∫ a b f ( x ) d x b − a f(\xi) = \frac{\int_a^bf(x) \mathrm{d}x}{b-a} f(ξ)=baabf(x)dx

f ( x ) 在 [ a , b ] f(x) 在 [a, b] f(x)[a,b] 上连续,根据最值定理2

m ⩽ f ( x ) ⩽ M m \leqslant f(x) \leqslant M mf(x)M

其中, m m m M M M,分别为 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上的最小值和最大值,则有

∫ a b m d x ⩽ ∫ a b f ( x ) d x ⩽ ∫ a b M d x \int_a^bm \mathrm{d}x \leqslant \int_a^bf(x) \mathrm{d}x \leqslant \int_a^bM \mathrm{d}x abmdxabf(x)dxabMdx

根据积分就是面积的几何意义,有

m ( b − a ) ⩽ ∫ a b f ( x ) d x ⩽ M ( b − a ) m(b-a) \leqslant \int_a^bf(x) \mathrm{d}x \leqslant M(b-a) m(ba)abf(x)dxM(ba)

⇒ m ⩽ ∫ a b f ( x ) d x b − a ⩽ M \Rightarrow m \leqslant \frac{\int_a^bf(x) \mathrm{d}x}{b-a} \leqslant M mbaabf(x)dxM

根据介值定理2 ∃ ξ ∈ [ a , b ] \exists \xi \in [a, b] ξ[a,b],使得

f ( ξ ) = ∫ a b f ( x ) d x b − a f(\xi) = \frac{\int_a^bf(x) \mathrm{d}x}{b-a} f(ξ)=baabf(x)dx

证毕。

  • 解法二:

由于 f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b] 上连续,根据原函数存在定理,存在

F ( x ) = ∫ a x f ( t ) d t F(x) = \int_a^x f(t) \mathrm{d}t F(x)=axf(t)dt

由牛顿-莱布尼茨公式及拉格朗日中值定理,有

∫ a b f ( x ) d x = F ( b ) − F ( a ) = F ′ ( ξ ) ( b − a ) = f ( x ) ( b − a ) \int_a^bf(x) \mathrm{d}x = F(b) - F(a) = F'(\xi)(b - a) = f(x)(b - a) abf(x)dx=F(b)F(a)=F(ξ)(ba)=f(x)(ba)

其中, ξ ∈ ( a , b ) \xi \in (a, b) ξ(a,b)

证毕。


  1. 积分中值定理 ↩︎

  2. 最值定理介值定理 ↩︎ ↩︎

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Skr.B

WUHOOO~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值