二项分布期望和方差的公式推导

二项分布即 重复 n次独立的 伯努利试验 。在每次试验中只有两种可能的结果,而且两种结果发生与否 互相 对立,并且相互 独立 ,与其它各次试验结果无关,事件发生与否的概率在每一次 独立试验 中都保持不变,则这一系列试验总称为n重伯努利实验,当试验次数为1时,二项分布就是 伯努利分布 。若每次实验中某事件发生的概率为p,不发生的概率为q,则有p+q=1。二项分布期望和方差的推导公式如下:
### RKNN模型量化后的精度变化分析 #### 使用accuracy_analysis接口进行量化精度分析 对于RKNN模型,在模拟器连板推理环境下均可以通过调用`accuracy_analysis`接口来进行量化精度分析。该过程能够帮助理解量化前后模型表现的变化情况,特别是针对不同类型的输入数据集时的表现差异[^1]。 ```python from rknn.api import RKNN def analyze_quantization_accuracy(model_path, dataset): rknn = RKNN() # 加载RKNN模型 ret = rknn.load_rknn(path=model_path) if ret != 0: print('Load RKNN model failed') exit(ret) # 设置运行环境 ret = rknn.init_runtime(target='rk3399pro') # 或者其他目标设备 if ret != 0: print('Init runtime environment failed') exit(ret) # 执行精度分析 result = rknn.accuracy_analysis(inputs=dataset, target='rk3399pro') return result ``` 上述Python代码展示了如何加载一个已有的RKNN模型并通过`accuracy_analysis`函数来执行精度分析的过程。这里假设已经有一个经过量化的RKNN模型文件(`model_path`)以及相应的测试数据集(`dataset`)用于比较原始浮点版本与整数量化版本之间的性能差距[^2]。 #### Top-K Accuracy作为主要评价标准 在评估RKNN模型的量化效果时,通常会关注Top-1 Top-5 准确度这两个要指标: - **Top-1 Accuracy**: 表示预测结果中最可能类别的置信度最高的那个是否匹配真实标签; - **Top-5 Accuracy**: 则更为宽松一点,只要真实的类别位于按概率排序后的前五个之内就算作正确识别。 这些统计可以帮助我们更全面地衡量模型在面对复杂场景下的鲁棒性泛化能力。 #### 预处理对量化精度的影响 值得注意的是,不当的数据预处理可能会严影响最终得到的量化模型的质量。例如,在YOLO系列网络中,如果忽略了必要的图像尺寸调整步骤,则可能导致严的精度损失甚至完全失去检测功能。因此,在准备用于训练或验证的数据之前,应当仔细考虑并实现合适的预处理逻辑以确保最佳的结果[^3]。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值