方差双期望公式
为了不让自己忘记这个公式,在此纪录推导过程。 X X X 和 Y Y Y 是两个随机变量(向量),那么
E ( X , Y ) [ g ( X , Y ) ] = E Y E X ∣ Y [ g ( X , Y ) ] = E Y E X [ g ( X , Y ) ∣ Y ] , E_{(X,Y)}[g(X,Y)]=E_YE_{X|Y}[g(X,Y)]=E_YE_{X}[g(X,Y)|Y], E(X,Y)[g(X,Y)]=EYEX∣Y[g(X,Y)]=EYEX[g(X,Y)∣Y],
其中 X X X 和 Y Y Y 对称。那么
V a r X ( X ) = E X ( X − E X X ) 2 = E ( X , Y ) ( X − E X X ) 2 = E ( X , Y ) ( X − E X [ X ∣ Y ] + E X [ X ∣ Y ] − E X X ) 2 = E ( X , Y ) ( X − E X [ X ∣ Y ] ) 2 + 2 E ( X , Y ) ( X − E X [ X ∣ Y ] ) ( E X [ X ∣ Y ] − E X X ) + E ( X , Y ) ( E X [ X ∣ Y ] − E X X ) 2 . \begin{aligned}Var_X(X) &= E_X(X-E_XX)^2 = E_{(X,Y)}(X-E_{X}X)^2\\ & = E_{(X,Y)}(X-E_X[X|Y]+E_X[X|Y]-E_{X}X)^2\\ & = E_{(X,Y)}(X-E_X[X|Y])^2 \\ &\quad+ 2E_{(X,Y)}(X-E_X[X|Y])(E_X[X|Y]-E_{X}X)\\ &\quad+E_{(X,Y)}(E_X[X|Y]-E_XX)^2. \end{aligned} VarX(X)=EX(X−EXX)2=E(X,Y)(X−EXX)2=E(X,Y)(X−EX[X∣Y]+EX[X∣Y]−EXX)2=E(X,Y)(X−EX[X∣Y])2+2E(X,Y)(X−EX[X∣Y])(EX[X∣Y]−EXX)+E(X,Y)(EX[X∣Y]−EXX)2.
其中第二项等于 0 0 0,因为
E ( X , Y ) ( X − E X [ X ∣ Y ] ) ( E X [ X ∣ Y ] − E X X ) = E Y E X ∣ Y ( X − E X [ X ∣ Y ] ) ( E X [ X ∣ Y ] − E X X ) = E Y { ( E X [ X ∣ Y ] − E X X ) E X ∣ Y ( X − E X [ X ∣ Y ] ) } = 0. \begin{aligned}& E_{(X,Y)}(X-E_X[X|Y])(E_X[X|Y]-E_{X}X)\\&\quad = E_YE_{X|Y}(X-E_X[X|Y])(E_X[X|Y]-E_{X}X)\\ &\quad = E_Y\{(E_X[X|Y]-E_{X}X)E_{X|Y}(X-E_X[X|Y])\}=0. \end{aligned} E(X,Y)(X−EX[X∣Y])(EX[X∣Y]−EXX)=EYEX∣Y(X−EX[X∣Y])(EX[X∣Y]−EXX)=EY{(EX[X∣Y]−EXX)EX∣Y(X−EX[X∣Y])}=0.
又由于
E ( X , Y ) ( X − E X [ X ∣ Y ] ) 2 = E Y E X ∣ Y ( X − E X [ X ∣ Y ] ) 2 = E Y [ V a r ( X ∣ Y ) ] E ( X , Y ) ( E X [ X ∣ Y ] − E X X ) 2 = E Y E X ∣ Y ( E X [ X ∣ Y ] − E X X ) 2 = V a r Y [ E ( X ∣ Y ) ] . \begin{aligned}&E_{(X,Y)}(X-E_X[X|Y])^2 = E_YE_{X|Y}(X-E_X[X|Y])^2=E_Y[Var(X|Y)] \\& E_{(X,Y)}(E_X[X|Y]-E_XX)^2= E_YE_{X|Y}(E_X[X|Y]-E_XX)^2=Var_Y[E(X|Y)].\end{aligned} E(X,Y)(X−EX[X∣Y])2=EYEX∣Y(X−EX[X∣Y])2=EY[Var(X∣Y)]E(X,Y)(EX[X∣Y]−EXX)2=EYEX∣Y(EX[X∣Y]−EXX)2=VarY[E(X∣Y)].
因此, V a r X ( X ) = E Y [ V a r ( X ∣ Y ) ] + V a r Y [ E ( X ∣ Y ) ] Var_X (X) = E_Y[Var(X|Y)] + Var_Y[E(X|Y)] VarX(X)=EY[Var(X∣Y)]+VarY[E(X∣Y)] 即为方差的双期望公式。通过这个双期望公式,我们可以得出结论样本方差不会小于其条件方差的平均,借助这个思想可以帮助我们更好的理解 Rao-Blackwell 定理。
Rao-Blackwell 定理简述,假设 T T T 是一个充分统计量, ψ ( X ~ ) \psi(\widetilde{X}) ψ(X ) 是参数 θ \theta θ 的无偏估计,那么 g ^ ( T ) = E ( ψ ( X ~ ) ∣ T ) \hat{g}(T) = E(\psi(\widetilde{X})|T) g^(T)=E(ψ(X )∣T) 是 θ \theta θ 的一个方差减小的充分无偏估计。