方差双期望公式

方差双期望公式

为了不让自己忘记这个公式,在此纪录推导过程。 X X X Y Y Y 是两个随机变量(向量),那么
E ( X , Y ) [ g ( X , Y ) ] = E Y E X ∣ Y [ g ( X , Y ) ] = E Y E X [ g ( X , Y ) ∣ Y ] , E_{(X,Y)}[g(X,Y)]=E_YE_{X|Y}[g(X,Y)]=E_YE_{X}[g(X,Y)|Y], E(X,Y)[g(X,Y)]=EYEXY[g(X,Y)]=EYEX[g(X,Y)Y],
其中 X X X Y Y Y 对称。那么
V a r X ( X ) = E X ( X − E X X ) 2 = E ( X , Y ) ( X − E X X ) 2 = E ( X , Y ) ( X − E X [ X ∣ Y ] + E X [ X ∣ Y ] − E X X ) 2 = E ( X , Y ) ( X − E X [ X ∣ Y ] ) 2 + 2 E ( X , Y ) ( X − E X [ X ∣ Y ] ) ( E X [ X ∣ Y ] − E X X ) + E ( X , Y ) ( E X [ X ∣ Y ] − E X X ) 2 . \begin{aligned}Var_X(X) &= E_X(X-E_XX)^2 = E_{(X,Y)}(X-E_{X}X)^2\\ & = E_{(X,Y)}(X-E_X[X|Y]+E_X[X|Y]-E_{X}X)^2\\ & = E_{(X,Y)}(X-E_X[X|Y])^2 \\ &\quad+ 2E_{(X,Y)}(X-E_X[X|Y])(E_X[X|Y]-E_{X}X)\\ &\quad+E_{(X,Y)}(E_X[X|Y]-E_XX)^2. \end{aligned} VarX(X)=EX(XEXX)2=E(X,Y)(XEXX)2=E(X,Y)(XEX[XY]+EX[XY]EXX)2=E(X,Y)(XEX[XY])2+2E(X,Y)(XEX[XY])(EX[XY]EXX)+E(X,Y)(EX[XY]EXX)2.
其中第二项等于 0 0 0,因为
E ( X , Y ) ( X − E X [ X ∣ Y ] ) ( E X [ X ∣ Y ] − E X X ) = E Y E X ∣ Y ( X − E X [ X ∣ Y ] ) ( E X [ X ∣ Y ] − E X X ) = E Y { ( E X [ X ∣ Y ] − E X X ) E X ∣ Y ( X − E X [ X ∣ Y ] ) } = 0. \begin{aligned}& E_{(X,Y)}(X-E_X[X|Y])(E_X[X|Y]-E_{X}X)\\&\quad = E_YE_{X|Y}(X-E_X[X|Y])(E_X[X|Y]-E_{X}X)\\ &\quad = E_Y\{(E_X[X|Y]-E_{X}X)E_{X|Y}(X-E_X[X|Y])\}=0. \end{aligned} E(X,Y)(XEX[XY])(EX[XY]EXX)=EYEXY(XEX[XY])(EX[XY]EXX)=EY{(EX[XY]EXX)EXY(XEX[XY])}=0.
又由于
E ( X , Y ) ( X − E X [ X ∣ Y ] ) 2 = E Y E X ∣ Y ( X − E X [ X ∣ Y ] ) 2 = E Y [ V a r ( X ∣ Y ) ] E ( X , Y ) ( E X [ X ∣ Y ] − E X X ) 2 = E Y E X ∣ Y ( E X [ X ∣ Y ] − E X X ) 2 = V a r Y [ E ( X ∣ Y ) ] . \begin{aligned}&E_{(X,Y)}(X-E_X[X|Y])^2 = E_YE_{X|Y}(X-E_X[X|Y])^2=E_Y[Var(X|Y)] \\& E_{(X,Y)}(E_X[X|Y]-E_XX)^2= E_YE_{X|Y}(E_X[X|Y]-E_XX)^2=Var_Y[E(X|Y)].\end{aligned} E(X,Y)(XEX[XY])2=EYEXY(XEX[XY])2=EY[Var(XY)]E(X,Y)(EX[XY]EXX)2=EYEXY(EX[XY]EXX)2=VarY[E(XY)].
因此, V a r X ( X ) = E Y [ V a r ( X ∣ Y ) ] + V a r Y [ E ( X ∣ Y ) ] Var_X (X) = E_Y[Var(X|Y)] + Var_Y[E(X|Y)] VarX(X)=EY[Var(XY)]+VarY[E(XY)] 即为方差的双期望公式。通过这个双期望公式,我们可以得出结论样本方差不会小于其条件方差的平均,借助这个思想可以帮助我们更好的理解 Rao-Blackwell 定理。


Rao-Blackwell 定理简述,假设 T T T 是一个充分统计量, ψ ( X ~ ) \psi(\widetilde{X}) ψ(X ) 是参数 θ \theta θ 的无偏估计,那么 g ^ ( T ) = E ( ψ ( X ~ ) ∣ T ) \hat{g}(T) = E(\psi(\widetilde{X})|T) g^(T)=E(ψ(X )T) θ \theta θ 的一个方差减小的充分无偏估计。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

⊙▽⊙我是不会告诉你秘密的!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值