BZOJ 1492 [NOI 2007] 货币兑换Cash (dp + 分治)

题目链接:BZOJ 1492

其实这种用单调队列来更新答案的dp可以用平衡树这种鬼畜做法来维护,做到时间复杂度为NlogN,前不久我还写了一道用splay维护的dp题。这道题就是学习一下cdq分治,代码确实比用splay写的要短。


#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;

const int maxn = 100000 + 10;

int N, S, top = 0, Left = 0, Right = 0;
double eps = 1e-9;

int q[maxn];
double f[maxn];

struct node{
	int id;
	double a, b, rate, k, x, y;
}D[maxn], t[maxn];

inline int read(){
	int x = 0, f = 1; char ch = getchar();
	while(ch < '0' || ch > '9'){if(ch == '-')f = -1; ch = getchar();}
	while(ch >= '0' && ch <= '9'){x = x * 10 + ch - '0'; ch = getchar();}
	return x * f;
}

void input(){
	N = read(); f[0] = read();
	for(int i = 1; i <= N; ++i){
		scanf("%lf%lf%lf", &D[i].a, &D[i].b, &D[i].rate);
		D[i].k = - D[i].a / D[i].b; D[i].id = i;
	}
}

bool cmp(node A, node B){
	return A.k > B.k;
}

double get(int A, int B){
	if(!A)return -1e20;
	if(abs(D[A].x - D[B].x) < eps)return 1e20;
	return (D[A].y - D[B].y) / (D[A].x - D[B].x);
}

void cdq(int l, int r){
	if(l == r){
		f[l] = max(f[l], f[l - 1]);
		D[l].y = f[l] / (D[l].a * D[l].rate + D[l].b);
		D[l].x = D[l].y * D[l].rate;
		return ;
	}
	int mid = (l + r) >> 1;
	int L = l, R = mid + 1;
	for(int i = l; i <= r; ++i){
		if(D[i].id <= mid)t[L ++] = D[i];
		else t[R ++] = D[i];
	}
	for(int i = l; i <= r; ++i)D[i] = t[i];
	
	cdq(l, mid);
	
	Left = 1; Right = 0;
	for(int i = l; i <= mid; ++i){
		while(Right > 1 && get(q[Right], q[Right - 1]) < get(i, q[Right - 1]) + eps)Right --;
		q[++Right] = i;
	}
	q[++Right] = 0;
	
	for(int i = mid + 1; i <= r; ++i){
		while(Left < Right && get(q[Left + 1], q[Left]) + eps > D[i].k)Left ++;
		f[D[i].id] = max(f[D[i].id], D[q[Left]].x * D[i].a + D[q[Left]].y * D[i].b);
	}
	
	cdq(mid + 1, r);
	
	L = l; R = mid + 1;
	for(int i = l; i <= r; ++i){
		if((D[L].x < D[R].x || (abs(D[L].x - D[R].x) < eps && D[L].y < D[R].y) || (R > r)) && L <= mid)t[i] = D[L ++];
		else t[i] = D[R ++];
	}
	for(int i = l; i <= r; ++i)D[i] = t[i];
}

void solve(){
	sort(D + 1, D + N + 1, cmp);
	cdq(1, N);
	printf("%.3lf\n", f[N]);
}

int main(){
	input();
	solve();
	return 0;
}


  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值