逻辑函数的相等
1.【定义】设有两个逻辑函数Y1 = f(A,B,C,…),Y2 = g(A,B,C,…),他们的变量都是A,B,C,…如果对应于变量A,B,C,…的任何一组变量取值Y1和Y2的值都相同,则称Y1和Y2是相等的,记为Y1 = Y2
2.【推论】若两个逻辑函数相等,则它们的真值表一定相同;反之,若两个函数的真值表完全相同,则这两个函数一定相等
逻辑代数的基本定理
1.常量之间的关系
(1)与运算:0·0 = 0,0·1 = 0,1·0 = 0,1·1 = 1
(2)或运算:0+0 = 0,0+1 = 1,1+0 = 1,1+1 = 1
(3)非运算:¬0 = 1,¬1 = 0
2.逻辑代数的基本定律
(1)0-1律:A+1 = 1,A·0 = 0
(2)自等律:A+0 = A,A·1 = A
(3)等幂律:A+A = A,A·A = A
(4)互补率:A+¬A = 1,A·¬A = 0
(5)交换律:A+B = B+A,A·B = B·A
(6)结合律:(A+B)+C = A+(B+C),(A·B)·C = A·(B·C)
(7)分配率:A+B·C = (A+B)·(A+C),A·(B+C) = A·B+A·C
(8)吸收率1:A·B+A·¬B = A,(A+B)·(A+¬B) = A
(9)吸收率2:A+A·B = A,A·(A+B) = A
(10)吸收率3:A+¬AB = A+B,A·(¬A+B) = A·B
(11)多余项定律:AB+¬AC+BC = AB+¬AC,(A+B)(¬A+C)(B+C) = (A+B)(¬A+C)
【说明】:
如果在与或表达式中,两乘积项分别包含同一因子的原变量和反变量,而两项的剩余因子正好组成第三项,则第三项是多余的可以去掉,因此可以得出推论:
A·B+¬A·C+B·C·D = A·B+¬A·C
(12)求反律:¬(A+B) = ¬A·¬B,¬(A·B) = ¬A+¬B
(13)否否率:¬(¬A) = A
逻辑代数运算的基本规则
1.代入规则
任何一个含有变量A的等式,如果将所有出现A的位置都用同一个逻辑函数代替,则等式仍然成立,这个规则称为代入规则
2.反演规则
对于任何一个逻辑表达式Y,如果将表达式中所有
{
运
算
符
“
⋅
”
换
成
“
+
”
,
“
+
”
换
成
“
⋅
”
变
量
原
变
量
换
成
反
变
量
,
反
变
量
换
成
原
变
量
常
量
“
0
”
换
成
“
1
”
,
“
1
”
换
成
“
0
”
\begin{cases} 运算符& “·”换成“+”,“+”换成“·”\\ 变量& 原变量换成反变量,反变量换成原变量\\ 常量& “0”换成“1”,“1”换成“0” \end{cases}
⎩⎪⎨⎪⎧运算符变量常量“⋅”换成“+”,“+”换成“⋅”原变量换成反变量,反变量换成原变量“0”换成“1”,“1”换成“0”
那么所得到的表达式就是函数Y的反函数¬Y(或称补函数),这个规则称为反演规则
【注意】
1.变换时要保持原式中的运算顺序
2.不是在“单个”变量上的“非”号应保持不变
3.对偶规则
对于任何一个逻辑表达式Y,如果将表达式中所有
{
运
算
符
“
⋅
”
换
成
“
+
”
,
“
+
”
换
成
“
⋅
”
变
量
保
持
不
变
常
量
“
0
”
换
成
“
1
”
,
“
1
”
换
成
“
0
”
\begin{cases} 运算符& “·”换成“+”,“+”换成“·”\\ 变量& 保持不变\\ 常量& “0”换成“1”,“1”换成“0” \end{cases}
⎩⎪⎨⎪⎧运算符变量常量“⋅”换成“+”,“+”换成“⋅”保持不变“0”换成“1”,“1”换成“0”
那么所得到的表达式就是函数Y的对偶函数Y’,这个规则称为对偶规则
【注意】
1.变换时要保持原式中的运算顺序
2.F的对偶式F’与反函数¬F不同,在求F’时不要将原变量与反变量互换,所以一般情况下,F’<>¬F,只有在特殊情况下才相等