学习资料参考线上公开资料。
01 逻辑函数的最简形式
化简的目的:降低电路实现的成本,以较少的门实现电路
最简与-或表达式定义:
逻辑函数有不同形式,如与-或表达式、与非-与非表达式、或-与表达式、或非-或非表达式以及与-或-非表达式等
其中包含的与项数最少,且每个与项中变量数最少的与-或表达式称为最简与-或表达式
02 代数法化简
运用逻辑代数的基本定律和恒等式进行化简的方法—— 就是代数化简法 。
代数法化简方法有:
- 并项法:
- 吸收法:A + AB = A
- 消去法:
- 配项法:
注意:
03 卡诺图法
步骤:
- 根据逻辑函数的变量数量构建卡诺图
并将逻辑函数转换为最小项表达式
(卡诺图的格数为 2^n (n为变量数),每个方格代表一个最小项。 变量取值按循环码排列,确保相邻方格只有一个变量不同) - 将表达式中包含的最小项对应的方格填入“1”,其余方格填入“0”或空格
对于无关项填入“X”,圈定时可视为1或0(其中无关项是指约束项和任意项) - 圈出相邻的“1”的圈,圈大小应为 2^n 个方格,且每个圈消去n个变量
(消去的变量根据A+A!=1可知)
要求:(1)一个包围圈的方格数要尽可能多,圈的数目要尽可能少,
(2)每个圈至少包含一个尚未被圈过的“1” - 最后将所有圈的乘积项相+,得到逻辑函数的最简与或表达式
(在最小项中0代表非,1表原变量)
值得一提的是:在同一个卡诺图中画圈的方式可能不惟一,因此用卡诺图化简所得到的最简与或表达式也不惟一。
04 逻辑函数形式的变化
因为通常在一片集成电路芯片中只会有一种门电路,为了减少门电路的种类,需要对逻辑函数表达式进行变换