013 逻辑函数的化简

学习资料参考线上公开资料。

01 逻辑函数的最简形式

化简的目的:降低电路实现的成本,以较少的门实现电路

 最简与-或表达式定义:

逻辑函数有不同形式,如与-或表达式、与非-与非表达式、或-与表达式、或非-或非表达式以及与-或-非表达式等

 其中包含的与项数最少,且每个与项中变量数最少的与-或表达式称为最简与-或表达式


02 代数法化简

运用逻辑代数的基本定律和恒等式进行化简的方法—— 就是代数化简法 。

代数法化简方法有:

  • 并项法:

  • 吸收法:A + AB = A 

  • 消去法:

  • 配项法:

注意:

03 卡诺图法

步骤:

  1. 根据逻辑函数的变量数量构建卡诺图
    并将逻辑函数转换为最小项表达式
    (卡诺图的格数为 2^n (n为变量数),每个方格代表一个最小项。 变量取值按循环码排列,确保相邻方格只有一个变量不同)
  2. 将表达式中包含的最小项对应的方格填入“1”,其余方格填入“0”或空格
    对于无关项填入“X”,圈定时可视为1或0(其中无关项是指约束项和任意项)
  3. 圈出相邻的“1”的圈,圈大小应为 2^n 个方格,且每个圈消去n个变量
    (消去的变量根据A+A!=1可知)
    要求:(1)一个包围圈的方格数要尽可能多,圈的数目要尽可能少,
               (2)每个圈至少包含一个尚未被圈过的“1”
  4. 最后将所有圈的乘积项相+,得到逻辑函数的最简与或表达式
    (在最小项中0代表非,1表原变量)

值得一提的是:在同一个卡诺图中画圈的方式可能不惟一,因此用卡诺图化简所得到的最简与或表达式也不惟一。

04 逻辑函数形式的变化

因为通常在一片集成电路芯片中只会有一种门电路,为了减少门电路的种类,需要对逻辑函数表达式进行变换

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值