package algorithmbasic.basicsets.class27;
/**
* 矩阵快速幂问题详解:https://hezhaojiang.github.io/post/2020/41da3a83/
*/
/**
* 矩阵快速幂是一种基础算法,本身与动态规划没有关系,但常用于优化线性递推关系的计算,并且其思路比较固定,本章将矩阵快速幂做基础介绍。
* 动态规划主要用于解决两类问题,一类是优化问题,求最优解,另一类是组合计数,求方案数。
* 矩阵快速幂主要用在第二类,即组合计数,求方法数这类问题,可以将时间复杂度从 O (N) 降到 O (logN)。
*/
/**
* 第一年农场有1只成熟的母牛A,往后的每年:
* 1)每一只成熟的母牛都会生一只母牛
* 2)每一只新出生的母牛都在出生的第三年成熟
* 3)每一只母牛永远不会死
* 返回N年后牛的数量。
*/
public class cowProduction {
/**
*
* 思路:求N年后牛的数量F(N),F(N) = F(N-1) + F(N-3),第N年时牛的数量等于前一年牛的数量加上三年前牛的数量(可以生育的牛的数量)。
* 这就是一个严格的递推公式,可以使用矩阵快速幂优化到 -- LOGN
*/
/**
* F(N) = F(N-1) + F(N-3)
* 这要建立一个三阶矩阵。因为最低的一位到N-3了。
* 根据矩阵快速幂的固定公式:|Fn......Fn-i| = |Fi...F1| * |i * i| ^ (n - i)
* |Fn,Fn-1,Fn-2| = |F3,F2,F1| * |{a,b,c},{d,e,f},{h,i,g}|^(n - 3)
* Fn = F3 * A + F2 * D + F1 * H
*/
/**
* year cowsNumbers
* 1 1
* 2 2
* 3 3
* 4 4
* 5 6
* 6 9
*/
public static int c3(int n) {
if (n < 1) {
return 0;
}
if (n == 1 || n == 2 || n == 3) {
return n;
}
//计算三阶矩阵。
int[][] base = {
{1, 1, 0},
{0, 0, 1},
{1, 0, 0}};
//计算三阶矩阵的n-3次方
int[][] ans = matrixPower(base, n - 3);
//|Fn,Fn-1,Fn-2| = |F3,F2,F1| * |{a,b,c},{d,e,f},{h,i,g}|^(n - 3)
//Fn = F3 * A + F2 * D + F1 * H
return 3 * ans[0][0] + 2 * ans[1][0] + 1 * ans[2][0];
}
//计算矩阵的次方,时间复杂度 -- LOGN
private static int[][] matrixPower(int[][] base, int p) {
//创建一个单位矩阵
int[][] res = new int[base.length][base[0].length];
for (int i = 0; i < base.length; i++) {
res[i][i] = 1;
}
int[][] t = base;
//采用二进制分解的方法
while (p != 0) {
if ((p & 1) != 0) {
res = product(res, t);
}
t = product(t, t);
p >>= 1;
}
return res;
}
//矩阵乘法
private static int[][] product(int[][] a, int[][] b) {
int m = b[0].length;
int n = a.length;
int k = a[0].length;
int[][] ans = new int[a.length][b[0].length];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
for (int c = 0; c < k; c++) {
ans[i][j] += a[i][c] * b[c][j];
}
}
}
return ans;
}
public static void main(String[] args) {
System.out.println(c3(6));
}
}
27.1:矩阵快速幂问题详解
最新推荐文章于 2024-10-31 20:10:41 发布