matlab数字图像处理实验三:熟悉空域和频域增强方法,理解并掌握常用平滑和锐化方法


博客使用指南:把每一节的 代码按顺序和提示复制到matlab就行。

准备工作

原理

造一张带噪声的图像,用imnoise()函数,我这里加了高斯噪声,注意用完的图像会变成double类的,对后续运算有影响。

代码

img0=imread('01.jpg');
img0=rgb2gray(img0);
img1=imnoise(img0,'gaussian',0,0.02);%加噪声,后两位参数可以改
[m,n]=size(img1);

题目一:对一幅带有噪声图像采用空域和频域的滤波方法实现平滑处理,空域和频域至少选择一种方法自己编写代码实现,并比较、分析不同窗口大小的滤波方法对其结果的影响

原理

空域滤波常用的平滑就方框滤波、均值滤波、中值滤波、双边滤波;频域滤波常用的平滑就理想低通滤波、巴特沃思低通滤波、高斯低通滤波这样子,如果想多找几种代码的话,就照这个思路找。
代码,害,就硬抄平滑代码来源

代码

平滑就先做一下预处理,如下:

fz0=3;%滤波器窗口大小
z0=zeros(m+fz0-1,n+fz0-1);%拓展图像边界
half0=floor(fz0/2); %滤波器窗口中点的index-1
z0(half0+1:m+half0,half0+1:n+half0)=img1;

然后开始处理就完事了,如下:

%空域均值滤波
filter0 = 1/fz0^2 * ones(fz0);
G1 = zeros(m, n);
for i = 1:m
    for j = 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值