KKT条件的理解

KKT条件相对应的是拉格朗日条件
KKT对应是unequality constraint;拉格朗日乘子对应的是Equality constraint。
Eg:
Minimize: f ( x 1 , x 2 ) = x 1 2 + x 2 2 − 14 x 1 − 6 x 2 f(x_1,x_2) = x_12 + x_2^2 - 14x_1 - 6x_2 f(x1,x2)=x12+x2214x16x2
st. $g_1(x_1,x_2) = x_1 + x_2 - 2 <= 0 $
g 2 ( x 1 , x 2 ) = x 1 + 2 x 2 − 3 &lt; = 0 g_2(x_1,x_2) = x_1 + 2x_2 - 3 &lt;= 0 g2(x1,x2)=x1+2x23<=0
Solution:
L ( x 1 , x 2 , λ 1 , λ 2 ) = x 1 2 + x 2 2 − 14 x 1 − 6 x 2 + λ 1 ( x 1 + x 2 − 2 ) + λ 2 ( x 1 + 2 x 2 − 3 ) L(x_1,x_2,\lambda_1,\lambda_2) = x_12 + x_2^2 - 14x_1 - 6x_2 + \lambda_1(x_1 + x_2 - 2) + \lambda_2(x_1 + 2x_2 - 3) L(x1,x2,λ1,λ2)=x12+x2214x16x2+λ1(x1+x22)+λ2(x1+2x23)
对于上述的求导过程:假设 g 1 和 g 2 g_1和g_2 g1g2都是active的
L x 1 = 2 x 1 − 14 + λ 1 + λ 2 = 0 L_{x_1} = 2x_1 -14 + \lambda_1+\lambda_2 = 0 Lx1=2x114+λ1+λ2=0
L x 2 = 2 x 2 − 6 + λ 1 + 2 λ 2 = 0 L_{x_2} = 2x_2 -6 + \lambda_1+2\lambda_2 = 0 Lx2=2x26+λ1+2λ2=0
L λ 1 = x 1 + x 2 − 2 = 0 L_{\lambda_1} = x_1 + x_2 - 2 = 0 Lλ1=x1+x22=0
L λ 2 = x 1 + 2 x 2 − 3 = 0 L_{\lambda_2} = x_1 + 2x_2 - 3 = 0 Lλ2=x1+2x23=0
因此,我们需要将每一个未知变量求解出来:
x 1 , x 2 , λ 1 , λ 2 x_1,x_2,\lambda_1,\lambda_2 x1,x2,λ1,λ2,根据上面的4个等式,我们得到的结果是:
[ 2 0 1 1 0 2 1 2 1 1 0 0 1 2 0 0 ] [ x 1 x 2 λ 1 λ 2 ] = [ 14 6 2 3 ] \begin{bmatrix}2&amp;0&amp;1&amp;1\\0&amp;2&amp;1&amp;2\\1&amp;1&amp;0&amp;0\\1&amp;2&amp;0&amp;0\end{bmatrix}\begin{bmatrix}x_1\\x_2\\\lambda_1\\\lambda_2\end{bmatrix} = \begin{bmatrix}14\\6\\2\\3\end{bmatrix} 2011021211001200x1x2λ1λ2=14623
这个是一个具有唯一解的矩阵,对应的解为:
x 1 = 1 , x 2 = 1 , λ 1 = 20 , λ 2 = − 8 x_1 = 1,x_2 = 1,\lambda_1 = 20,\lambda_2 = -8 x1=1,x2=1,λ1=20,λ2=8,但是这里,不符合KKT的应用条件,因为在这里,$\lambda_1 > 0 $ 但是$\lambda_2 < 0 , 这 个 是 不 满 足 K K T 条 件 的 , 因 此 , 在 这 里 , 我 们 对 于 ,这个是不满足KKT条件的,因此,在这里,我们对于 KKT\lambda_1和\lambda_2 对 于 两 个 不 等 式 约 束 , 因 此 采 用 不 同 的 激 活 的 方 法 , 首 先 需 要 满 足 s t 的 条 件 , 再 判 断 对于两个不等式约束,因此采用不同的激活的方法,首先需要满足st的条件,再判断 st\lambda_i$的参数是否是 >0的。从而得到最优解。

KKT条件定理:
L ( x , α , β ) = f ( x ) + ∑ a i g i ( x ) + ∑ β i h i ( x ) L(x,\alpha,\beta) = f(x) + \sum a_ig_i(x) + \sum \beta_ih_i(x) L(x,α,β)=f(x)+aigi(x)+βihi(x),在这中间,g 是不等式约束,h 是等式约束。KKT所满足的条件,一定满足最优解下面的几个因素。
st.
(1):L对于每一个x求导的结果为0
(2):h(x) = 0
(3): ∑ a i g i ( x ) = 0     a i ≥ 0 \sum a_ig_i(x) = 0 \ \ \ a_i\geq0 aigi(x)=0   ai0
我对于第3个式子的理解如下,首先是我们需要满足 g i ( x ) ≤ 0 g_i(x) \leq 0 gi(x)0 的这个条件,也就是说,某一次的g(x)在为最优解的时候起作用,那么这次的系数的值可以不为0。如果这个系数没有起作用,那么这个系数必须为0。
这样的理解,会引起一个问题,当 ∑ a i g i ( x ) = 0 \sum a_ig_i(x) = 0 aigi(x)=0中,不等式的数量很多,这样就会有很多的不等式约束的组合。因此,我们换一个角度理解,我们两两进行谈论不就可以了,为什么采用两个进行分析,因为两个,就只有一种情况,就是你增我减,如果存在的变量的数太多,那样就不知道到底如何调节哪一部分进行调整。
这个在之后的SMO算法实现SVM中就有使用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值