CINTA第七次作业

第七次作业

1.(1)运用 C R T CRT CRT 求解:
x ≡ 8   ( m o d    11 ) x ≡ 3   ( m o d    19 ) x \equiv 8 \,(\mod 11)\\x \equiv 3 \, (\mod 19) x8(mod11)x3(mod19)
​ 解,令 a = 8 , b = 3 , p = 11 , q = 19 , n = 11 × 19 a = 8, b= 3,p = 11 ,q =19,n = 11\times19 a=8,b=3,p=11,q=19,n=11×19 , p p − 1 ≡ 1 ( m o d    19 ) → p − 1 = 7 pp^{-1 } \equiv 1 (\mod 19 )\rightarrow p^{-1} = 7 pp11(mod19)p1=7, q q − 1 ≡ 1 ( m o d    11 ) → q − 1 = 7 qq^{-1}\equiv 1 (\mod 11) \rightarrow q^{-1} = 7 qq11(mod11)q1=7 .
所以 x = ( a q q − 1 + b p p − 1 ) m o d    n = 41 x= (aqq^{-1}+bpp^{-1})\mod n = 41 x=(aqq1+bpp1)modn=41

  1. (2)运用 C R T CRT CRT 求解:
    x ≡ 1 ( m o d    5 ) x ≡ 2 ( m o d    7 ) x ≡ 3 ( m o d    9 ) x ≡ 4 ( m o d    11 ) x\equiv 1 (\mod 5)\\ x\equiv 2 (\mod 7)\\ x\equiv 3 (\mod 9)\\ x\equiv 4 (\mod 11) x1(mod5)x2(mod7)x3(mod9)x4(mod11)
    解: M = 5 × 7 × 9 × 11 = 3465 , b 0 = M / 5 = 693 , b 1 = M / 7 = 495 , b 2 = M / 9 = 385 , b 3 = M / 11 = 315. M = 5\times7\times9\times11 = 3465 , b_0 = M/5 = 693,b_1 = M /7 =495 ,b_2 = M/9 =385,b_3 = M/11 = 315. M=5×7×9×11=3465,b0=M/5=693,b1=M/7=495,b2=M/9=385,b3=M/11=315.
    b 0 − 1 = 2 , b 1 − 1 = 3 , b 2 − 1 = 4 , b 3 − 1 = 8 b_0^{-1} =2,b_1^{-1} =3 ,b_2^{-1}= 4,b_3^{-1}= 8 b01=2,b11=3,b21=4,b31=8

    x = ( ∑ a i b i b i − 1 ) m o d    M = 1731 x=(\sum a_ib_ib_i^{-1}) \mod M = 1731 x=(aibibi1)modM=1731

  2. 手动计算 200 0 2019 ( m o d    221 ) 2000^{2019}(\mod221) 20002019(mod221) ,不允许使用电脑或者其他电子设备。【提示:这是一道看上去与中国剩余定理无关的计算题。】

    解: 221 = 13 × 17 221 = 13\times 17 221=13×17. Z 221 ∗ \mathbb{Z}_{221}^* Z221 Z 13 ∗ × Z 17 ∗ \mathbb{Z}_{13}^* \times \mathbb{Z}_{17}^* Z13×Z17 同构。

    2000 ↔ ( 11 , 11 ) 2000 \leftrightarrow(11,11) 2000(11,11),所以
    ( 11 , 11 ) 2019 = ( 1 1 2019 m o d    13 , 1 1 2019 m o d    17 ) (11,11)^{2019} = (11^{2019 } \mod13 ,11^{2019} \mod 17) (11,11)2019=(112019mod13,112019mod17) .

    对于 1 1 2019 m o d    13 11^{2019 } \mod13 112019mod13 , 2019 = 12 × 168 + 3 2019 = 12 \times 168 +3 2019=12×168+3 , 1 1 2019 = ( 1 1 12 ) 168 × 1 1 3 11^{2019 } = (11^{12})^{168 }\times 11^3 112019=(1112)168×113 ,根据费尔马小定理可知: 1 1 2019 m o d    13 = 1 1 3 m o d    13 = 5 11^{2019 } \mod13 = 11^3 \mod 13 = 5 112019mod13=113mod13=5

    对于 1 1 2019 m o d    17 11^{2019} \mod 17 112019mod17 同理可得到其值为 5 5 5

    所以 ( 11 , 11 ) 2019 = ( 5 , 5 ) ↔ 5 (11,11)^{2019} = (5,5) \leftrightarrow 5 (11,11)2019=(5,5)5

    所以 200 0 2019 ( m o d    221 ) = 5 2000^{2019}(\mod221) = 5 20002019(mod221)=5 .

  3. (9)请使用第一同构定理证明定理 10.4 10.4 10.4 中定义的映射 ϕ \phi ϕ 的单射性。
    定理 10.4 10.4 10.4 :中国剩余定理的代数版本
    设 n = p q , p > 1 和 q > 1 是 两 个 互 素 的 正 整 数 。 则 设n=pq,p>1和q>1是两个互素的正整数。则 n=pq,p>1q>1
    Z n ≅ Z p × Z q 且 Z n ∗ ≅ Z p ∗ × Z q ∗ \mathbb{Z}_n \cong \mathbb{Z}_p \times\mathbb{Z}q \quad 且 \quad \mathbb{Z}_n ^* \cong\mathbb{Z}_p^* \times \mathbb{Z}_q ^* ZnZp×ZqZnZp×Zq
    定义从 Z n \mathbb{Z} n Zn Z p × Z q \mathbb{Z}_p \times \mathbb{Z}_q Zp×Zq的映射 ϕ \phi ϕ 为: ϕ ( x ) = ( [ x m o d    p ] , [ x m o d    q ] ) \phi(x) = ([x \mod p],[x\mod q]) ϕ(x)=([xmodp],[xmodq]) 。证明 ϕ \phi ϕ 的单射性。

    证明:设 K = ker ⁡ ϕ \mathbb{K} = \ker \phi K=kerϕ , 易知 Z p × Z q \mathbb{Z}_p \times \mathbb{Z}_q Zp×Zq 的单位员为 ( 0 , 0 ) (0,0) (0,0) ,则由中国剩余定理可知,存在唯一的元素 0 ∈ Z n 0 \in \mathbb{Z}_n 0Zn ,使得 0 → ( 0 , 0 ) 0 \rightarrow (0,0) 0(0,0) ,所以 K = ker ⁡ ϕ = { 0 } \mathbb{K} =\ker\phi = \{0\} K=kerϕ={0}

    ψ : Z n → Z n / K \psi:\mathbb{Z}_n \rightarrow \mathbb{Z}_n /\mathbb{K} ψ:ZnZn/K 为标准同态,由同构第一定理可知,存在唯一同构映射

    η : Z n / K → ϕ ( Z n ) \eta :\mathbb{Z}_n /\mathbb{K} \rightarrow \phi(\mathbb{Z}_n) ηZn/Kϕ(Zn) ,使得 ϕ = ψ η \phi = \psi \eta ϕ=ψη

    现在只要证明 ψ \psi ψ 是单射的 ,加之 η \eta η 也是单射的( η \eta η是同构的),则可以证明 ϕ \phi ϕ 是单射的。
    可知 ψ : Z n → Z n / K \psi:\mathbb{Z}_n \rightarrow \mathbb{Z}_n /\mathbb{K} ψ:ZnZn/K g → g K = g 0 = g g \rightarrow g\mathbb{K} = g0=g ggK=g0=g ,即映射 ψ \psi ψ g g g 映射到陪集 { g } \{ g\} {g} ,则 ψ \psi ψ 显然是单射的。(如果看不出是显然的话,不防任取 ψ ( a ) = ψ ( b ) → a K = b K → a 0 = b 0 → a = b \psi (a) = \psi (b) \rightarrow a\mathbb{K} = b\mathbb{K} \rightarrow a0=b0 \rightarrow a = b ψ(a)=ψ(b)aK=bKa0=b0a=b ,所以 ψ \psi ψ 是单射的。更进一步 ψ \psi ψ 是同构的。)

    所以 ϕ \phi ϕ 是单射的。命题得证。

  4. (10)完成定理 10.4 10.4 10.4 的证明,即证明 Z n ∗ \mathbb{Z}_n^* Zn Z p ∗ × Z q ∗ \mathbb{Z}_p ^* \times \mathbb{Z}_q^* Zp×Zq 同构。

    证明:

    (1)定义从 Z n ∗ \mathbb{Z}_n^* Zn Z p ∗ × Z q ∗ \mathbb{Z}_p^*\times \mathbb{Z}_q^* Zp×Zq 的映射 ϕ \phi ϕ为:
    ϕ ( x ) = ( [ x m o d    p ] , [ x m o d    q ] ) \phi(x) = ([x \mod p], [x \mod q]) ϕ(x)=([xmodp],[xmodq])
    (2)证明映射 ϕ \phi ϕ 是一种双射,即证明 ϕ \phi ϕ 是满射且单射。根据中国剩余定理, ϕ \phi ϕ 显然是满射的。下面证明 ϕ \phi ϕ 是单射的,任取正整数 a , b < n a,b < n a,b<n ,假设 ϕ ( a ) = ϕ ( b ) \phi(a) = \phi(b) ϕ(a)=ϕ(b) ,即 ( [ a m o d    p ] , [ a m o d    q ] ) = ( [ b m o d    p ] , [ ] b m o d    q ] ) ([a\mod p ],[a \mod q ]) =([b\mod p ],[] b \mod q]) ([amodp],[amodq])=([bmodp],[]bmodq]) ,由中国剩余定理可知 a = b a = b a=b ϕ \phi ϕ 为单射。

    (3)证明 ϕ \phi ϕ 保持群操作:
    ϕ ( a ⋅ b ) = ( [ ( a ⋅ b ) m o d    p ] , [ ( a ⋅ b ) m o d    q ] ) = ( [ a m o d    p ] , [ a m o d    q ] ) ⋅ ( [ b m o d    p ] , [ b m o d    q ] ) = ϕ ( a ) ⋅ ϕ ( b ) \begin{aligned} \phi(a\cdot b ) &= ([(a\cdot b) \mod p],[(a\cdot b) \mod q]) \\ &=([a \mod p] ,[a \mod q]) \cdot([b \mod p],[b \mod q])\\ &=\phi(a)\cdot \phi(b) \end{aligned} ϕ(ab)=([(ab)modp],[(ab)modq])=([amodp],[amodq])([bmodp],[bmodq])=ϕ(a)ϕ(b)
    结合(1)(2)(3),命题得证。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值