CINTA 第六次作业

本文详细探讨了群论中的正规子群、群同态及其性质。通过证明,展示了H是G的正规子群当且仅当对任意g,有gHg^-1包含于H;同时证明了群同态保持群操作当且仅当群是阿贝尔群;此外还阐述了循环群和交换群在同态映射下的性质。最后,证明了指标为2的子群是正规子群的特性。
摘要由CSDN通过智能技术生成

第六次作业

  1. (4)根据命题9.5 , H \mathbb{H} H G \mathbb{G} G 是的正规子群当且仅当对任意 g ∈ G g \in \mathbb{G} gG ,有 g H g − 1 = H g\mathbb{H}g^{-1} = \mathbb{H} gHg1=H 。实际上,后置条件可以放松到只要求 g H g − 1 ⊂ H g\mathbb{H}g^{-1} \sub \mathbb{H} gHg1H。请给出证明。
    证明:即证明: H \mathbb{H} H G \mathbb{G} G 是的正规子群当且仅当对任意 g ∈ G g \in \mathbb{G} gG ,有 g H g − 1 ⊂ H g\mathbb{H}g^{-1} \sub \mathbb{H} gHg1H

    (1) ⇒ \Rightarrow : 因为: H \mathbb{H} H G \mathbb{G} G 是的正规子群,所以对任意 g ∈ G , g H = H g g\in \mathbb{G} ,g\mathbb{H} = \mathbb{H}g gG,gH=Hg; 即对任意给定的 g ∈ G g \in \mathbb{G} gG h ∈ H h\in \mathbb{H} hH ,存在 h ′ ∈ H h'\in \mathbb{H} hH 使得 g h = h ′ g gh=h'g gh=hg 。根据消去律, g h g − 1 = h ′ ∈ H ghg^{-1} = h' \in \mathbb{H} ghg1=hH ,即得 g H g − 1 ⊂ H g\mathbb{H}g^{-1} \sub \mathbb{H} gHg1H
    (2) ⇐ \Leftarrow :假设对任意 g ∈ G g \in \mathbb{G} gG g H g − 1 ⊂ H g\mathbb{H}g^{-1} \sub \mathbb{H} gHg1H 。那么,对任意 h ∈ H h \in \mathbb{H} hH,存在 h ′ ∈ H h' \in \mathbb{H} hH 使得 g h g − 1 = h ′ ghg^{-1} = h' ghg1=h 。即 g h = h ′ g gh=h'g gh=hg ,这意味着 g H ⊂ H g g\mathbb{H}\sub \mathbb{H}g gHHg。同理,可证明 H g ⊂ g H \mathbb{H}g \sub g\mathbb{H} HggH
    结合(1)(2),命题得证。

  2. (5)定义映射 ϕ : G ↦ G 为 g ↦ g 2 \phi : \mathbb{G} \mapsto \mathbb{G} 为 g\mapsto g^2 ϕ:GGgg2 。请证明 ϕ \phi ϕ 是一种群同态当且仅当 G \mathbb{G} G是阿贝尔群。
    证明:
    (1) ⇒ \Rightarrow : 因为 ϕ \phi ϕ 是群同态,即满足保持群操作: ϕ ( a ⋅ b ) = ϕ ( a ) ⋅ ϕ ( b ) \phi (a \cdot b) =\phi(a)\cdot \phi (b) ϕ(ab)=ϕ(a)ϕ(b)
    任取 m , n ∈ G m,n \in \mathbb{G} m,nG
    ϕ ( m ⋅ n ) = ( m ⋅ n ) 2 = ϕ ( m ) ⋅ ϕ ( n ) = m 2 ⋅ n 2 \phi(m\cdot n) = (m\cdot n)^2=\phi(m)\cdot \phi(n) =m^2\cdot n^2 ϕ(mn)=(mn)2=ϕ(m)ϕ(n)=m2n2
    ( m ⋅ n ) 2 = m 2 ⋅ n 2 → m ⋅ n ⋅ m ⋅ n = m ⋅ m ⋅ n ⋅ n (m\cdot n)^2 = m^2 \cdot n^2 \rightarrow m\cdot n \cdot m \cdot n = m\cdot m \cdot n \cdot n (mn)2=m2n2mnmn=mmnn 。根据消去律,得 n ⋅ m = m ⋅ n n\cdot m = m \cdot n nm=mn ,则 G \mathbb{G} G 是阿贝尔群。
    (2)$\Leftarrow $ :因为 G \mathbb{G} G是阿贝尔群,满足交换律,即任意 m , n ∈ G m,n\in \mathbb{G} m,nG n ⋅ m = m ⋅ n n\cdot m = m\cdot n nm=mn
    n ⋅ m = m ⋅ n → m ⋅ n ⋅ m ⋅ n = m ⋅ m ⋅ n ⋅ n → ( m ⋅ n ) 2 = m 2 ⋅ n 2 → ϕ ( m ⋅ n ) = ϕ ( m ) ⋅ ϕ ( n ) n\cdot m = m\cdot n \rightarrow m\cdot n \cdot m\cdot n = m\cdot m \cdot n \cdot n \rightarrow (m\cdot n)^2 =m^2\cdot n^2 \rightarrow \phi(m\cdot n) = \phi(m)\cdot \phi(n) nm=mnmnmn=mmnn(mn)2=m2n2ϕ(mn)=ϕ(m)ϕ(n)
    ϕ \phi ϕ 满足保持群操作,所以 ϕ \phi ϕ 是一种群同态。
    结合(1)(2),命题得证。

  3. (6)设 ϕ : G ↦ H \phi:\mathbb{G}\mapsto \mathbb{H} ϕ:GH ,是一种群同态。请证明:如果$\mathbb{G} $ 是循环群,则 ϕ ( G ) \phi(\mathbb{G}) ϕ(G) 也是循环群;如果 G \mathbb{G} G 是交换群,则 ϕ ( G ) \phi(\mathbb{G}) ϕ(G) 也是交换群。
    (1)证明如果$\mathbb{G} $ 是循环群,则 ϕ ( G ) \phi(\mathbb{G}) ϕ(G) 也是循环群:
    g g g G \mathbb{G} G的生成元,则存在 g ′ ∈ ϕ ( G ) g'\in \phi(\mathbb{G}) gϕ(G) ,使得 g ′ = ϕ ( g ) g' = \phi(g) g=ϕ(g)
    对于 G \mathbb{G} G中任意元素 g k ( k ∈ Z ) g^k(k\in \mathbb{Z}) gk(kZ) ,有 ϕ ( g k ) = ϕ ( g ) k = g ′ k ∈ ϕ ( G ) \phi(g^k) =\phi(g)^k =g'^k \in \phi(\mathbb{G}) ϕ(gk)=ϕ(g)k=gkϕ(G) ,即 ϕ ( G ) \phi(\mathbb{G}) ϕ(G) 中的任意元素可用 g ′ k g'^k gk 来表示,所以 ϕ ( G ) \phi(\mathbb{G}) ϕ(G) 为循环群,生成元为 g ′ g' g。命题得证。
    (2)证明如果 G \mathbb{G} G 是交换群,则 ϕ ( G ) \phi(\mathbb{G}) ϕ(G) 也是交换群。
    因为 G \mathbb{G} G 是交换群,即任意 m , n ∈ G , m ⋅ n = n ⋅ m m,n \in \mathbb{G} , m \cdot n = n \cdot m m,nGmn=nm
    ϕ ( m ⋅ n ) = ϕ ( m ) ⋅ ϕ ( n ) = ϕ ( n ) ⋅ ϕ ( m ) = ϕ ( n ⋅ m ) \phi(m\cdot n) = \phi(m) \cdot \phi(n) =\phi(n)\cdot\phi(m) =\phi(n \cdot m) ϕ(mn)=ϕ(m)ϕ(n)=ϕ(n)ϕ(m)=ϕ(nm) .

    所以 ϕ ( G ) \phi(\mathbb{G}) ϕ(G) 也是交换群。命题得证。

  4. (7)证明:如果 H \mathbb{H} H 是群 G \mathbb{G} G 上指标为2的子群,则 H \mathbb{H} H G \mathbb{G} G的正规子群。

    证明:因为 [ G : H ] = 2 \lbrack \mathbb{G} : \mathbb{H}\rbrack =2 [G:H]=2 ,则 G \mathbb{G} G H \mathbb{H} H划分为了两个部分,其中一个就是 H \mathbb{H} H ,我们设另一个为 K \mathbb{K} K,即证明任意 g ∈ G , g H = H g g \in \mathbb{G} , g\mathbb{H} =\mathbb{H}g gG,gH=Hg
    (1)若 g ∈ H g\in \mathbb{H} gH ,则 g − 1 ∈ H g^{-1} \in \mathbb{H} g1H,对于 g H g − 1 g\mathbb{H}g^{-1} gHg1 ,有 g H = H g\mathbb{H} = \mathbb{H} gH=H H g − 1 = H \mathbb{H} g^{-1} = \mathbb{H} Hg1=H ,所以 g H g − 1 = H → g H g − 1 g = H g → g H = H g g\mathbb{H}g^{-1}=\mathbb{H} \rightarrow g\mathbb{H}g^{-1}g=\mathbb{H}g\rightarrow g\mathbb{H}=\mathbb{H}g gHg1=HgHg1g=HggH=Hg .
    (2)若 g ∈ K g \in \mathbb{K} gK,则 g − 1 ∈ K g^{-1} \in \mathbb{K} g1K ,对于 g H g − 1 g\mathbb{H}g^{-1} gHg1 ,有 g H = K g\mathbb{H} =\mathbb{K} gH=K K g − 1 = H \mathbb{K} g^{-1} =\mathbb{H} Kg1=H ,所以 g H g − 1 = H → g H g − 1 g = H g → g H = H g g\mathbb{H}g^{-1}=\mathbb{H} \rightarrow g\mathbb{H}g^{-1}g=\mathbb{H}g\rightarrow g\mathbb{H}=\mathbb{H}g gHg1=HgHg1g=HggH=Hg.
    结合(1)(2), H \mathbb{H} H G \mathbb{G} G 的正规子群。命题得证。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值