【无标题】CINTA第五次作业 同构

  1. 证明:命题9.1 .
    命题9.1:

设 ϕ : G → H 从群 G 到群 H 的一种同构映射,则以下命题为真:

  1. ϕ −1 : H → G 也是同构;

  2. |G| = |H|;

  3. 如果 G 是阿贝尔群,则 H 也是阿贝尔群;

  4. 如果 G 是循环群,则 H 也是循环群;

  5. 如果 G 有阶为 n 的子群,则 H 也有阶为 n 的子群。
    证明:

(1)即证明 ϕ − 1 \phi ^{-1} ϕ1 保持群操作: ∀ x , y ∈ H \forall x,y \in \mathbb{H} x,yH ϕ − 1 ( x ∘ y ) = ϕ − 1 ( x ) ⋅ ϕ − 1 ( y ) \phi^{-1}(x\circ y) = \phi^{-1}(x)\cdot \phi^{-1}(y) ϕ1(xy)=ϕ1(x)ϕ1(y)
ϕ ( ϕ − 1 ( x ∘ y ) ) = x ∘ y = ϕ ( ϕ − 1 ( x ) ) ∘ ϕ ( ϕ − 1 ( y ) ) = ϕ ( ϕ − 1 ( x ) ⋅ ϕ − 1 ( y ) ) \phi(\phi^{-1}(x \circ y)) = x \circ y = \phi(\phi^{-1} (x)) \circ \phi(\phi^{-1}(y)) = \phi(\phi^{-1}(x) \cdot \phi^{-1}(y)) ϕ(ϕ1(xy))=xy=ϕ(ϕ1(x))ϕ(ϕ1(y))=ϕ(ϕ1(x)ϕ1(y)) ,
由于 ϕ \phi ϕ 为双射,所以 ϕ − 1 ( x ∘ y ) = ϕ − 1 ( x ) ⋅ ϕ − 1 ( y ) \phi^{-1}(x\circ y) = \phi^{-1}(x)\cdot \phi^{-1}(y) ϕ1(xy)=ϕ1(x)ϕ1(y) 。证毕。
(2)证明:因为 ϕ \phi ϕ 为双射, G \mathbb{G} G H \mathbb{H} H 中的元素一一对应,所以 ∣ G ∣ = ∣ H ∣ |\mathbb{G} | = | \mathbb{H} | G=H
(3)证明:因为 G \mathbb{G} G是阿贝群,群运算满足交换律, ∀ a , b ∈ G , a ⋅ b = b ⋅ a \forall a,b \in \mathbb{G} ,a \cdot b = b\cdot a a,bG,ab=ba .
ϕ ( a ⋅ b ) = ϕ ( a ) ∘ ϕ ( b ) \phi(a\cdot b) = \phi(a) \circ \phi(b) ϕ(ab)=ϕ(a)ϕ(b) , ϕ ( b ⋅ a ) = ϕ ( b ) ∘ ϕ ( a ) \phi(b\cdot a ) = \phi(b) \circ \phi (a) ϕ(ba)=ϕ(b)ϕ(a) ;
所以 ϕ ( a ) ∘ ϕ ( b ) = ϕ ( b ) ∘ ϕ ( a ) \phi(a) \circ \phi(b) = \phi(b) \circ \phi (a) ϕ(a)ϕ(b)=ϕ(b)ϕ(a) H \mathbb{H} H 也是阿贝尔群。
(4)证明:射 g g g G \mathbb{G} G 的生成元,对于 G G G 中的任意元素 g m g^m gm ,有:
ϕ ( g m ) = ϕ ( g ) m \phi(g^m)=\phi(g)^m ϕ(gm)=ϕ(g)m ,因为 ϕ \phi ϕ 为双射,所以 ϕ ( g ) m \phi(g)^m ϕ(g)m H \mathbb{H} H 中的任意元素,所以 H \mathbb{H} H 是循环群。
(5)证明:设 G ′ \mathbb{G} ' G G \mathbb{G} G n n n 阶子群, ∀ a , b ∈ G ′ \forall a ,b \in \mathbb{G}' a,bG a − 1 , b − 1 , a b ∈ G ′ a^{-1} ,b^{-1} ,ab \in \mathbb{G}' a1,b1,abG 。通过映射 ϕ \phi ϕ ,可得 ϕ ( a ) , ϕ ( b ) , ϕ ( a − 1 ) , ϕ ( b − 1 ) , ϕ ( a b ) = ϕ ( a ) ϕ ( b ) \phi(a),\phi(b),\phi(a^{-1}),\phi(b^{-1}) ,\phi(ab) =\phi(a)\phi(b) ϕ(a),ϕ(b),ϕ(a1),ϕ(b1),ϕ(ab)=ϕ(a)ϕ(b) ,此外,对于单位元 e e e ϕ ( e ) \phi(e) ϕ(e) 。这些元素的集合构成 H \mathbb{H} H 的子群 H ′ \mathbb{H}' H,满足群公理。且由(2) 可知 H ′ \mathbb{H}' H 的阶为 n n n

  1. 命题9.2:所有无限阶的循环群都同构于群 Z。
    证明:设群 G 是一个无限阶的循环群,g ∈ G 是生成元。定义 ϕ : Z → G 为 ϕ : n → gn

    则 ϕ(m + n) = g m+n = g mgn = ϕ(m)ϕ(n)。 然后,证明 ϕ 是双射。
    (1)证明单射:任取 a , b ∈ Z a,b \in \mathbb{Z} a,bZ ,若 ϕ ( a ) = ϕ ( b ) \phi(a) = \phi(b) ϕ(a)=ϕ(b) ,即 g a = g b g^a = g^b ga=gb ,因为 G \mathbb{G} G 为无限循环群 ,所以 a = b a =b a=b ,则 ϕ \phi ϕ是单射。

    (2)证明满射:任取 g x ∈ G g^x \in \mathbb{G} gxG ,则存在 x ∈ Z x \in \mathbb{Z} xZ ,使得 ϕ ( x ) = g x \phi(x) = g^x ϕ(x)=gx ,所以 ϕ \phi ϕ 是满射。
    有(1)(2)可知, ϕ \phi ϕ 是双射,命题得证。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值