摘要
本节是数学拓展课,主要讲解了多位数的除法计算方法。首先复习了除法的基本思想,即从高位开始分,若某一位不够分则换算成低位继续分。随后详细讲解了两位数除以一位数、三位数除以两位数以及四位数除以三位数的除法竖式计算过程,强调了试商的重要性,并通过具体例题演示了计算方法。最后总结了除法的核心思想,指出高位不够时换算低位继续分的统一标准流程,并鼓励学生通过多练习掌握这一核心能力。视频内容强调了理解和掌握除法竖式计算的统一思想,对于提升整数除法计算能力具有重要意义。
课程介绍与目标
1.介绍课程内容:更多位的除法计算方法。
2.目标:讲解多位数除以多位数的除法竖式计算。
除法竖式的复习
1.复习除法竖式的原理:从高位开始分。
2.整体分的思想:不够分时换成小单位继续分。
除法竖式的例题
1.例题1:58÷4,步骤:高位分一张十块,低位分18张一块。
2.例题2:58÷6,步骤:高位五张十块分给六人不够,直接看低位。
3.例题3:158÷12,步骤:高位一张百元换十张十元,低位分18张十元。
4.例题4:158÷18,步骤:高位一张百元换158张一元。
更高位的除法竖式
1.例题5:2940÷245,步骤:高位两张千元换294张十元。
2.例题6:1025÷205,步骤:高位一张千元换1025张一元。
除法竖式的统一思想
1.总结除法竖式的核心思想:高位不够时转换为低位继续分。
2.强调内功的重要性:掌握核心思想后能处理高位除法。
除法竖式的练习题
1.练习题1:2720÷32,步骤:高位两张千元换160张一元。
2.练习题2:9450÷210,步骤:高位九张千元换450张十元。
3.练习题3:11235÷321,步骤:高位十一张千元换160张十元。
今天这节课呢,继续给大家来一节加星号的拓展课啊,算是我们关于乘除法这一部分的最后一节拓展课。更多为了除法该怎么算,我们之前也讲过除法的计算啊,但是我们讲除法竖式的时候只讲到多位数,除以两位数,对吧?就是比如说三位数,除以两位数这种,但如果更高位的除法,该怎么算呢?嗯,
这个我们在真正的教学过程中发现啊,很多同学其实是不会的。因为嗯,他他会说我只学过最多除以一位数或者除以两位数,后面怎么算?我怎么知道呢?所以说我们今天再把除法的思想给大家贯通一下。然后帮助大家去自己推理出更高级的除法。首先,我们来复习一下啊,因为这个东西毕竟还是几节课,之前的内容了。我们是怎么推理出除法竖式?大家还记得吗?就是从图形化的操作到除法竖式是中间有一么一个过渡过程的,
我们整体的那个分的思想,大家还记得吗?比如说这5858。怎么平均分给四个人呢?我们有一个整体思想叫从高位开始分啊,先分这个大的,比如说一人一张十块的,然后剩了一个十块的,怎么办呢?那这这个十块的没法分啊,我又不能撕开,就只好再换钱,对吧?所以有一个整体思想就是这样。多位数除以不管是除以一位数,
还是除以两位数啊?不需要什么特别的方法,你只需要从高位去开始分。如果高位儿某一位儿不够了,比如说剩一张没法分给四个人了,那这时