(一)、独立集与覆盖
1、概念
定义1 设 G = ( V , E ) G=(V ,E) G=(V,E)是一个图。 V V V的一个顶点子集 V 1 V_1 V1称为 G G G的一个点独立集, 如果 V 1 V_1 V1中的顶点互不邻接;
G G G的一个包含顶点数最多的独立集称为 G G G的最大独立集。最大独立集包含的顶点数,称为 G G G的点独立数,记为 α ( G ) α(G) α(G)。

定义2 设 G = ( V , E ) G=(V ,E) G=(V,E)是一个图。 V V V的一个顶点子集 K K K称为 G G G的一个点覆盖, 如果 E E E中的每条边至少有一个端点在 K K K中。
G G G的一个包含顶点数最少的点覆盖称为 G G G的最小点覆盖。最小点覆盖包含的顶点数,称为 G G G的点覆盖数,记为 β ( G ) β(G) β(G)。

定理1 (加莱) 对任意不含孤立点的
n
n
n阶图
G
G
G,有:
α
(
G
)
+
β
(
G
)
=
n
α(G)+ β(G)= n
α(G)+β(G)=n
证明: 一方面,设 V 1 V_1 V1是G的最大点独立集。 G G G中每条边的端点最多一个在 V 1 V_1 V1中 (因为点独立集要求顶点之间互不相邻),所以 G G G中每条边的端点至少有一个在 V − V 1 V-V_1 V−V1中。即 V − V 1 V-V_1 V−V1构成 G G G的一个点覆盖 (即每条边至少有一个端点在点覆盖中),于是有: β ( G ) ≤ | V − V 1 | = n − α ( G ) β(G)≤|V-V1|=n - α(G) β(G)≤|V−V1|=n−α(G)
另一方面,设 K K K是 G G G的最小点覆盖。因为 G G G中每条边的端点至少有一个在 K K K中,所以 G G G中每条边的端点至多有一个在 V − K V-K V−K中。即 V − K V-K V−K构成 G G G的一个点独立集,于是有: α ( G ) ≥ | V − K | = n − β ( G ) α(G) ≥|V-K|=n - β(G) α(G)≥|V−K|=n−β(G)
由上面两个不等式,得到:
α ( G ) + β ( G ) = n α(G)+ β(G)= n α(G)+β(G)=n
(二)、边独立集与边覆盖
1、概念
定义3 设 G = ( V , E ) G=(V ,E) G=(V,E)是一个图。 E E E的一个边子集 E 1 E_1 E1称为 G G G的一个边独立集, 如果 E 1 E_1 E1中的边互不邻接;
G G G的一个包含边数最多的边独立集称为 G G G的最大边独立集。最大边独立集包含的边数,称为 G G G的边独立数,记为 α ′ ( G ) α'(G) α′(G) 。

注: 单图的一个边独立集实际上就是图的一个匹配,一个最大边独立集就是其一个最大匹配。
定义4 设 G = ( V , E ) G=(V ,E) G=(V,E)是一个图。 E E E的一个边子集 L L L 称为 G G G的一个边覆盖, 如果 G G G中的每个顶点均是 L L L中某条边的端点。
G G G的一个包含边数最少的边覆盖称为 G G G的最小边覆盖。最小边覆盖包含的边数,称为 G G G的边覆盖数,记为 β ′ ( G ) β'(G) β′(G)。

2、加莱恒等式
定理2 (加莱) 对任意不含孤立点的
n
n
n阶单图
G
G
G,有:
α
′
(
G
)
+
β
′
(
G
)
=
n
α'(G)+ β'(G)= n
α′(G)+β′(G)=n
证明: 一方面, 设 α ′ G ) = k α'G)= k α′G)=k, 则 G G G的最大匹配由 k k k条边组成,且覆盖了 2 k 2k 2k个顶点。
所以,余下的 n − 2 k n-2k n−2k个顶点至多需要 n − 2 k n-2k n−2k条边就可以被覆盖,于是: β ′ ( G ) ≦ k + ( n − 2 k ) = n − k = n − α ′ G ) β'(G)≦k+(n-2k)=n-k=n - α'G) β′(G)≦k+(n−2k)=n−k=n−α′G)
所以, α ′ ( G ) + β ′ ( G ) ≦ k + ( n − k ) = n α'(G)+ β'(G)≦ k+ (n - k)= n α′(G)+β′(G)≦k+(n−k)=n
另一方面, 设 X X X是 G G G的一个最小边覆盖,则 ∣ X ∣ = β ′ ( G ) |X|= β'(G) ∣X∣=β′(G)。 考虑导出子图 F = G [ X ] F = G[X] F=G[X]。可以证明 F F F中不会包含长度为 3 3 3的迹。若不然,设 F F F中包含长度为 3 3 3的迹。取该迹的中间边 e e e,显然, X − e X-e X−e 仍然构成 G G G的边覆盖,与X的最小性矛盾。所以, F F F中不包含长度为 3 3 3和大于 3 3 3的迹。也不包含圈。所以, F F F中的每个连通分支必然为星图。 F F F是森林。
(在第二章讲森林的时候讲过这个结果:阶数为 n n n,边数为 n − k n-k n−k的森林,一定包含 k k k个连通分支) 因为,阶数为 n n n,边数为 n − k n-k n−k的森林包含 k k k个连通分支。而 F F F的边数为 n − ( n − β ′ ( G ) ) n - (n- β'(G)) n−(n−β′(G))( β ′ ( G ) β'(G) β′(G) 换了个写的形式为 n − ( n − β ′ ( G ) ) n - (n- β'(G)) n−(n−β′(G))),所以 F F F有 n − β ′ ( G ) n- β'(G) n−β′(G)个分支。从 F F F的每个分支中选取一条边,可作成 G G G的一个匹配,所以 α ′ ( G ) ≥ n − β ′ ( G ) α'(G) ≥ n- β'(G) α′(G)≥n−β′(G)。 由上面两个不等式,得到: α ′ ( G ) + β ′ ( G ) = n α'(G)+ β'(G)= n α′(G)+β′(G)=n

定理3 设 G G G是无孤立点的偶图,则 G G G中最大点独立集包含的顶点数等于最小边覆盖所包含的边数。

(三)、点临界图与边临界图
定义5 设 G = ( V , E ) G=(V ,E) G=(V,E)是一个图。 v v v是 G G G的一个顶点, e e e是 G G G的一条边。若 β ( G − v ) < β ( G ) β(G-v) < β(G) β(G−v)<β(G)(删掉这个顶点后,点覆盖数减小) , 称 v v v是 G G G的 β β β临界点;若 β ( G − e ) < β ( G ) β(G-e) < β(G) β(G−e)<β(G) , 称 e e e是 G G G的 β β β临界边。

G 1 G_1 G1 为 2 2 2 点覆盖(取中间两个点 β ( G 1 ) = 2 β(G_1) = 2 β(G1)=2),当去掉标红的 v v v, β ( G 1 ) = 1 β(G_1) = 1 β(G1)=1
β ( G 2 ) = 2 β(G_2) = 2 β(G2)=2,当去掉 e e e 后, β ( G 2 ) = 1 β(G_2) = 1 β(G2)=1
容易知道:若
v
v
v是
G
G
G的一个
β
β
β临界点,则:
β
(
G
−
v
)
=
β
(
G
)
−
1
\beta(G-v)=\beta(G)-1
β(G−v)=β(G)−1
定理4 点 v v v是图 G G G的 β β β临界点当且仅当 v v v含于 G G G的某个最小点覆盖中。

注: (1) 有 β β β临界边的图必有 β β β临界点。
(2) 有 β β β临界点的图不一定有 β β β临界边。例如:

定义6 设 G = ( V , E ) G=(V ,E) G=(V,E)是一个图。若 G G G的每个顶点是 G G G的 β β β临界点,称该图是 β β β 点临界图;若 G G G的每条边均是 G G G的 β β β临界边,称该图是 β β β 边临界图。
(四)、拉姆齐数r (m, n)
定义7 设 m m m和 n n n是两个正整数,如果存在最小的 r ( m , n ) r(m ,n) r(m,n)阶的图 G G G, 使得 G G G中或者有 K m K_m Km或者有 n n n个顶点的独立集,则称正整数 r ( m , n ) r(m, n) r(m,n)为 ( m , n ) (m, n) (m,n)拉姆齐数。
如果用定义直接求 r ( m , n ) r(m, n) r(m,n), 一般是先恰当找出一个 k k k阶图 G 1 G_1 G1,说明它既不含 K m K_m Km,也不含 n n n点独立集,得到 r ( m , n ) > k r(m, n)>k r(m,n)>k; 然后再找到一个 k + 1 k+1 k+1阶图 G 2 G_2 G2, 说明它或者包含 K m K_m Km或者含有 n n n点独立集,得到 r ( m , n ) ≤ k + 1 r(m, n)≤k+1 r(m,n)≤k+1.
通过上面的方法,得到: r ( m , n ) = k + 1 r(m, n)=k+1 r(m,n)=k+1。
r ( 1 , n ) r(1, n) r(1,n) 表示找到一个最小阶数的图,使得这个图,要么含有 K 1 K_1 K1,要么含有 n n n 个顶点的点独立集。 这个最小阶数等于多少,就是 r ( 1 , n ) r(1, n) r(1,n) (不对)


定理2 当 m , n ≥ 2 m, n≥2 m,n≥2时,有: r ( m , n ) ≤ ( m + n − 2 m − 1 ) r(m,n)\leq\binom{m+n-2}{m-1} r(m,n)≤(m−1m+n−2)
定义8 称 r ( m , m ) r(m, m) r(m,m) 为对角线拉姆齐数。
(2) Erdos教授利用概率方法证明了如下结论:
定理3 r ( n , n ) ≥ ( 1 − o ( 1 ) ) 1 e 2 n ⋅ 2 n 2 r(n,n)\geq\left(1-o(1)\right)\frac1{e^{\sqrt{2}}}n\cdot2^{\frac n2} r(n,n)≥(1−o(1))e21n⋅22n (了解即可)
注: f ( n ) ≥ ( 1 − o ( 1 ) ) g ( n ) f(n)≥(1-o(1))g(n) f(n)≥(1−o(1))g(n)表示:对任意 ε > 0 ε>0 ε>0, 存在自然数 N N N,当 n ≥ N n≥N n≥N时,有 f ( n ) ≥ ( 1 − ε ) g ( n ) f(n)≥(1-ε)g(n) f(n)≥(1−ε)g(n)。
(3) 1959年,Erdos教授利用随机图论方法,巧妙证明了如下结论:
定理4
r
(
3
,
n
)
≥
c
(
n
ln
n
)
2
r(3,n)\geq c\left(\frac n{\ln n}\right)^2
r(3,n)≥c(lnnn)2
1995年,贝尔实验室的年轻数学家Kim(现在微软公司,他是Erdos的学生)得到定理4的改进界:
定理5
r
(
3
,
n
)
≥
c
1
n
2
ln
n
r(3,n)\geq c_1\frac{n^2}{\ln n}
r(3,n)≥c1lnnn2
(4) 对于r (m, n)的下界,1977年,Spencer利用罗瓦斯的局部引理得到:
定理6
r
(
m
,
n
)
≥
c
(
n
ln
n
)
m
+
1
2
r(m,n)\geq c\Bigg(\frac n{\ln n}\Bigg)^{\frac{m+1}2}
r(m,n)≥c(lnnn)2m+1
1980年,Komlos等得到:
定理7
r
(
m
,
n
)
≥
(
5000
)
m
n
m
−
1
(
ln
n
)
m
−
2
r(m,n)\geq\left(5000\right)^m\frac{n^{m-1}}{\left(\ln n\right)^{m-2}}
r(m,n)≥(5000)m(lnn)m−2nm−1
后来,Bollbas教授作了改进:
定理7
r
(
m
,
n
)
≥
c
(
20
)
m
n
m
−
1
(
ln
n
)
m
−
2
r(m,n)\geq c(20)^m\frac{n^{m-1}}{\left(\ln n\right)^{m-2}}
r(m,n)≥c(20)m(lnn)m−2nm−1
2007年,我国学者李雨生等进一步对上面界做了改进,引起数学界的关注! 即:
定理8
r
(
m
,
n
)
≥
(
1
+
o
(
1
)
)
n
m
−
1
(
ln
n
)
m
−
2
r(m,n)\geq(1+o(1))\frac{n^{m-1}}{\left(\ln n\right)^{m-2}}
r(m,n)≥(1+o(1))(lnn)m−2nm−1