RippleNet基于知识图谱的推荐算法

随着知识图谱近几年越来越热门,用知识图谱进行推荐的想法也随之产生。知识图谱结构本质上是由(头实体,关系,尾实体)三元组组成的集合,并构成有向图。下图形象的表示了在电影领域用知识图谱做推荐的原理,左边是用户喜爱的电影,中间是这些电影在知识图谱中和右边几部电影的联系,我们可以看到左边的电影和右边的电影在知识图谱中呈现了很多种相似的关系。在知识图谱中发现这些相关物品对推荐系统具有十分重大的价值。RippleNet就这样诞生了。

RippleNet模型如下图所示。以用户感兴趣的物品作为起点,在知识图谱上经过多层扩散,相当于将用户的兴趣在知识图谱上传播,达到抽取用户的特征的目的,最后将用户的特征与物品的特征通过矩阵相乘得到推荐值。

tensorflow2代码实现:https://github.com/SSSxCCC/Recommender-System

【资源说明】 基于知识图谱推荐算法MCRec的python实现源码+项目说明+数据集.zip基于知识图谱推荐算法MCRec的python实现源码+项目说明+数据集.zip基于知识图谱推荐算法MCRec的python实现源码+项目说明+数据集.zip基于知识图谱推荐算法MCRec的python实现源码+项目说明+数据集.zip 基于知识图谱推荐算法MCRec的python实现源码+项目说明+数据集.zip 基于知识图谱推荐算法MCRec的python实现源码+项目说明+数据集.zip 基于知识图谱推荐算法MCRec的python实现源码+项目说明+数据集.zip 运行环境 python == 3.7.0 torch == 1.12.0 pandas == 1.1.5 numpy == 1.21.6 sklearn == 0.0 数据集介绍 music-音乐 book-书籍 ml-电影 yelp-商户 文件介绍 ratings.txt:记录用户点击的项目,1代表点击了,0代表没有点击 kg.txt:知识图谱文件,第一列是头实体,第二列是尾实体,第三列是关系 user-list.txt:用户及其id文件,第一列是用户的id,第二列是用户 其余文件可忽略 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载使用,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SSSxCCC

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值