问题描述:(单向TSP(Unidirectional TSP ,UVa 116))
给一个m行n列的整数矩阵(m<=10,n<=100),从第一列的任意位置出发每次往右,右上,右下走一格,最终达到最后一列。要求经过的整数之和最小。矩阵是环形的,第一行的上一行为最后一行,最后一个行的下一行为第一行。输出路径上的每一列的行号,多解时输出字典序最小的。
分析:
在题目中,每一列就是一个阶段,每个阶段只有3个决策:直行,右上右下。设d[i][j]表示从格子(i,j)出发到最后一列的最小的开销,所有逆推。又因为阶段最优!=最终最优,所以要记录所有的情况,最优解由第一列的最优者决定。所以要用next[i][j]记录当前d[i][j]的最优值是由下一列哪一行推出的;
#include <iostream>
#include <algorithm>
using namespace std;
int a[100][100],d[100][100],next[100][100];
int INF = 9999999;
int main()
{
int n,m,i,j,k,first=0;
cin>>m>>n;
for(i=0;i<m;i++)
for(j=0;j<n;j++)
cin>>a[i][j];
int ans = INF;
for(j=n-1;j>=0;j--)
{
for(i=0;i<m;i++)
{
if(j==n-1)
{
d[i][j]=a[i][j];
}
else
{
int rows[3]={i,i-1,i+1};
if(i==0)
rows[1]=m-1;
if(i==m-1)
rows[2]=0;
sort(rows,rows+3);
d[i][j]=INF;
for(k=0;k<3;k++)
{
int v = d[rows[k]][j+1] + a[i][j];
if(v < d[i][j])
{
d[i][j] = v;
next[i][j] = rows[k];
}
}
}
if(j==0 && d[i][j] < ans)
{
ans = d[i][j];
first = i;
}
}
}
cout<<first+1;
for(int i=next[first][0],j=1;j < n;j++)
{
cout<<" "<<i+1;
i = next[i][j];
}
cout<<endl;
cout<<ans<<endl;
return 0;
}
输入:
5 6
3 4 1 2 8 6
6 1 8 2 7 4
5 9 3 9 9 5
8 4 1 3 2 6
3 7 2 8 6 4
输出:
1 2 3 4 4 5
16