(POJ 2299)Ultra-QuickSort 归并排序求逆序数

Ultra-QuickSort
Time Limit: 7000MS Memory Limit: 65536K
Total Submissions: 56331 Accepted: 20814
Description

In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swapping two adjacent sequence elements until the sequence is sorted in ascending order. For the input sequence
9 1 0 5 4 ,

Ultra-QuickSort produces the output
0 1 4 5 9 .

Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.
Input

The input contains several test cases. Every test case begins with a line that contains a single integer n < 500,000 – the length of the input sequence. Each of the the following n lines contains a single integer 0 ≤ a[i] ≤ 999,999,999, the i-th input sequence element. Input is terminated by a sequence of length n = 0. This sequence must not be processed.
Output

For every input sequence, your program prints a single line containing an integer number op, the minimum number of swap operations necessary to sort the given input sequence.
Sample Input

5
9
1
0
5
4
3
1
2
3
0
Sample Output

6
0
Source

Waterloo local 2005.02.05

题意:
给你一个n个数的数列,每次可以交换相邻两个数,求最少交换多少次可以使数列单调递增。

分析:
就是求逆序数。我们用归并排序,归并排序在合并时刚好可以很好的求出逆序数。

AC代码:

#include <cstdio>
#include <cstring>
#include <algorithm>
#define ll long long
using namespace std;
int const MAX = 500005;
int a[MAX], b[MAX], n;
ll ans;

void Merge(int l, int mid, int r)
{
    int i = l, j = mid + 1, k = l;
    while(i <= mid && j <= r)
    {
        if(a[i] <= a[j])
            b[k++] = a[i++];
        else
        {
            b[k++] = a[j++];
            //因为左右区间都是有序的,因此a[i]>a[j]说明a[i]~a[mid]都大于a[j]
            ans += mid - i + 1;
        }
    }
    while(i <= mid) b[k++] = a[i++];
    while(j <= r) b[k++] = a[j++];
    for(int s=l;s<=r;s++) a[s]=b[s];
    return;
}

void Merge_sort(int l, int r)
{
    if(l < r)//开始时,写成了while。。。
    {
        int mid = (l + r) / 2;
        Merge_sort(l, mid);
        Merge_sort(mid + 1, r);
        Merge(l, mid, r);
    }
    return;
}

int main()
{
    while(scanf("%d", &n) != EOF && n)
    {
        ans = 0;
        for(int i = 0; i < n; i++)
            scanf("%d", &a[i]);
        Merge_sort(0, n - 1);
        printf("%lld\n", ans);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值