(POJ 1185)炮兵阵地 <状压DP经典题目>

炮兵阵地
司令部的将军们打算在N*M的网格地图上部署他们的炮兵部队。一个N*M的地图由N行M列组成,地图的每一格可能是山地(用”H” 表示),也可能是平原(用”P”表示),如下图。在每一格平原地形上最多可以布置一支炮兵部队(山地上不能够部署炮兵部队);一支炮兵部队在地图上的攻击范围如图中黑色区域所示:
这里写图片描述
如果在地图中的灰色所标识的平原上部署一支炮兵部队,则图中的黑色的网格表示它能够攻击到的区域:沿横向左右各两格,沿纵向上下各两格。图上其它白色网格均攻击不到。从图上可见炮兵的攻击范围不受地形的影响。
现在,将军们规划如何部署炮兵部队,在防止误伤的前提下(保证任何两支炮兵部队之间不能互相攻击,即任何一支炮兵部队都不在其他支炮兵部队的攻击范围内),在整个地图区域内最多能够摆放多少我军的炮兵部队。
Input

第一行包含两个由空格分割开的正整数,分别表示N和M;
接下来的N行,每一行含有连续的M个字符(‘P’或者’H’),中间没有空格。按顺序表示地图中每一行的数据。N <= 100;M <= 10。
Output

仅一行,包含一个整数K,表示最多能摆放的炮兵部队的数量。
Sample Input

5 4
PHPP
PPHH
PPPP
PHPP
PHHP
Sample Output

6
Source

Noi 01

题意:
在一个n行m列的矩阵中,字符’P’处能放炮兵,字符’H’处不能放炮兵。 并且如果两个炮兵在一条(水平或垂直)直线上时,它们的距离不能小于2,问最多放多少个兵。

分析:
写过之前的POJ 3254 后,对于这一题理解起来就比较的简单了
只是相邻的要判断两位,垂直方向上要判断两行不冲突

/** 
题意:在一个n行m列的矩阵中,字符'P'处能放炮兵,字符'H'处不能放炮兵。 
      并且如果两个炮兵在一条(水平或垂直)直线上时,它们的距离不能小于2,问最多放多少个兵。 

由于在求第i行时,它的状态要收到第i-1行和i-2行的影响,所以定义一个三维dp: 
dp[i][j][k]表示第i行的状态为state[j],第i-1行的状态为state[k]时,前i行能放炮兵的最大数量。 

for ( ... i < n ...) 
{ 
    for ( ... j < nState ... ) 
    { 
        如果状态j和第i行的地形不冲突,那么: 
        for ( ... k < nState ... ) 
        { 
            如果第i行状态j和第i-1行状态k不冲突,那么: 
            for ( ... h < nState ... ) 
            { 
                如果第i行状态j和第i-2行状态h不冲突,那么: 
                在dp[i-1][k][h]中找最大的一个赋值给dp[i][j][k],再加上state[j]中1的个数 
            } 
        } 
    } 
} 

*/  

#include <cstdio>  
#include <cstring>  
#include <iostream>  
#include <algorithm>  

using namespace std;  

int n, m, dp[105][80][80];      //dp[i][j][k]表示第i行的状态为j,第i-1行的状态为k时能放炮兵的最大数量  

int nState, state[80], num[80]; //10位二进制位中各个1之间的距离不小于2,这样的数只有60个。  
                                //依次存放在state[]中,num[i]表示state[i]中1的个数  

//在小于2^m的数中找1之间的距离不小于2的数,保存在state[]中  
void init()  
{  
    int k = 1 << m;  
    nState = 0;  
    for (int i = 0; i < k; i++)  
        if ( (i&(i<<1)) == 0 && (i&(i<<2)) == 0 )  
        {  
            state[nState] = i;  
            num[nState] = 0;  
            int j = i;  
            while (j)  
            {  
                num[nState] += j % 2;  
                j /= 2;  
            }  
            nState++;  
        }  
}  

int main()  
{  
    int  row[105];  
    char str[15];  

    while ( cin >> n >> m )  
    {  
        init();  
        for (int i = 0; i < n; i++)  
        {  
            row[i] = 0;  
            scanf("%s", str);  
            for (int j = 0; j < m; j++)  
                if (str[j] == 'P')  
                    row[i] += 1 << j;  
        }  

        memset(dp, 0, sizeof(dp));  

        // 计算dp[0]  
        for (int j = 0; j < nState; j++)  
        {  
            if ( (state[j] & row[0]) != state[j] )  
                continue;  
            for (int k = 0; k < nState; k++)  
                dp[0][j][k] = num[j];  
        }  

        // 计算dp[1]  
        if (n > 1)  
        for (int j = 0; j < nState; j++)  
        {  
            if ( (state[j] & row[1]) != state[j] )  
                continue;  
            for (int k = 0; k < nState; k++)  
            {  
                if ( (state[j] & state[k]) == 0 )  
                    dp[1][j][k] = dp[0][k][0] + num[j];  
            }  
        }  

        // 计算dp[>1]  
        for (int i = 2; i < n; i++)  
        {  
            for (int j = 0; j < nState; j++)  
            {  
                if ( (state[j] & row[i]) != state[j] )  
                    continue;  
                for (int k = 0; k < nState; k++)  
                {  
                    if ( state[j] & state[k] )  
                        continue;  
                    for (int h = 0; h < nState; h++)  
                    {  
                        if ( state[j] & state[h] )  
                            continue;  
                        if ( dp[i-1][k][h] > dp[i][j][k] )  
                            dp[i][j][k] = dp[i-1][k][h];  
                    }  
                    dp[i][j][k] += num[j];  
                }  
            }  
        }  

        // 在dp[n-1]中找最大值  
        int max = 0;  
        for (int j = 0; j < nState; j++)  
        {  
            for (int k = 0; k < nState; k++)  
                if (max < dp[n-1][j][k])  
                    max = dp[n-1][j][k];  
        }  

        printf("%d\n", max);  
    }  
}  

更多状压DP好题总结:http://blog.csdn.net/accry/article/details/6607703

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 给出一个$n\times m$的矩阵,每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值