基本上有三个月没记录具体的学习心得了。主要目前的研究重点放在图像识别和目标检测上,所以这次就先开始写写目标检测的内容,之后有时间再把理论学习的部分的坑填了。
目前而言,在目标检测方面有不少的网络和模型,例如yolo、R-CNN、fast R-CNN等等,种类繁多,一一学起来也是相当耗费时间。暂时笔者这边的任务是做乐高积木的二维图像识别检测和机器人拆卸,目前在时间上没法投入大量的资源去记性网络的研究,所以是以利用已有的网络做迁移为主。
Google在2017年6月开放了一个Tensorflow Object Detection API的这么一个玩意儿(以下简称TFOD API),其利用TF实现了不少已有的一些目标检测网络,正好也比较适合我们来利用,那现在就讲下怎么安装。
一 TFObjectDetection API 环境搭建
先介绍我的安装环境:
Win10系统,python3.6+Tensorflow,嗯大概就这些
1.API下载
在Git hub上(https://github.com/tensorflow/models)能够下载到TFOD API的最新文件,直接选择打包下载zip文件就好。加下来的内容,这个目录(models/research/object_detection)的这个object detection文件夹就是TFOD API的重点文件夹了。