Allee效应与Leslic矩阵

回顾

无限制的指数增长:
{ N ′ = r ⋅ N N t = e r t + c N t = C 0 ⋅ e r t \begin{cases} &N'=r\cdot N\\ &N_{t}=e^{rt+c}\\ &N_{t}=C_{0}\cdot e^{rt} \end{cases} N=rNNt=ert+cNt=C0ert
限制下的增长(Logistic方程):
{ N ′ = r ⋅ N ( 1 − N K ) N t = K ⋅ b 0 e − r t + b 0 \begin{cases} &N'=r\cdot N(1-\frac{N}{K})\\ &N_{t}=\frac{K\cdot b_{0}}{e^{-rt}+b_{0}} \end{cases} {N=rN(1KN)Nt=ert+b0Kb0
Logistic Map and Bifurcation:
x t + 1 = μ ⋅ x t ( 1 − x t ) x_{t+1}=\mu\cdot x_{t}(1-x_{t}) xt+1=μxt(1xt)

一、Allee Effect

1、方程

方程 N ′ = r ⋅ N N'=r\cdot N N=rN中, r ≠ 0 r\not=0 r=0,所以当 N ′ = 0 N'=0 N=0时,有解为 N = 0 N=0 N=0,但不是均衡点:
在这里插入图片描述
方程 N ′ = r ⋅ N ( 1 − N K ) N'=r\cdot N(1-\frac{N}{K}) N=rN(1KN)中,所以当 N ′ = 0 N'=0 N=0时,有解为 { N 1 ∗ = 0 N 2 ∗ = K \begin{cases}N^{*}_{1}=0\\N^{*}_{2}=K\end{cases} {N1=0N2=K,其中 N 2 ∗ = K N^{*}_{2}=K N2=K是均衡点:

在这里插入图片描述
现在向Logistic方程引入参数 A A A ,满足以下条件:
{ 当 N < A 时, N ′ < 0 , N ↓ 当 N > A 时, N ′ > 0 , N ↑ \begin{cases} 当N<A时,N'<0,N\downarrow\\ 当N>A时,N'>0,N\uparrow \end{cases} {N<A时,N<0NN>A时,N>0N
即:
N ′ = r ⋅ N ( 1 − N K ) ( N A − 1 ) N'=r\cdot N(1-\frac{N}{K})(\frac{N}{A}-1) N=rN(1KN)(AN1)
Steady state: N ′ = 0 N'=0 N=0
解得:
{ N 1 ∗ = 0 N 2 ∗ = A N 3 ∗ = K \begin{cases} N^{*}_{1}=0\\ N^{*}_{2}=A\\ N^{*}_{3}=K \end{cases} N1=0N2=AN3=K
但是此解有两种情况:
A > K A>K A>K
∵ A > K \because A>K A>K
∴ 若 N > A ,则 N > K , N ′ < 0 \therefore若N>A,则N>K,N'<0 N>A,则N>KN<0
在这里插入图片描述

∴ 当 N > K 时种群还在增长,这不符合 K 的原假设( N > K 时,种群下降) \therefore 当N>K时种群还在增长,这不符合K的原假设(N>K时,种群下降) N>K时种群还在增长,这不符合K的原假设(N>K时,种群下降)
∴ 不考虑 A > K 时的情况 \therefore不考虑A>K时的情况 不考虑A>K时的情况

K > A K>A K>A
{ N ∈ ( 0 , A ] 时, N ′ < 0 ,种群衰退 N ∈ ( N , K ] 时, N ′ > 0 ,种群扩张 N > K 时, N ′ < 0 ,种群大小下降 \begin{cases} N\in(0,A]时,N'<0,种群衰退\\ N\in(N,K]时,N'>0,种群扩张\\ N>K时,N'<0,种群大小下降 \end{cases} N(0A]时,N<0,种群衰退N(N,K]时,N>0,种群扩张N>K时,N<0,种群大小下降
这符合原假设
在这里插入图片描述
将方程 N ′ = r ⋅ N ( 1 − N K ) ( N A − 1 ) N'=r\cdot N(1-\frac{N}{K})(\frac{N}{A}-1) N=rN(1KN)(AN1) 在时间 t t t 对种群大小 N N N 的坐标轴上表示为:
在这里插入图片描述
即当种群大小 N > A N>A N>A 时,种群才可以延续,即最小可持续种群。比较常见的解释是,当种群大小小于 A A A 时,种群中的个体无法有效的与异性交配无法有效的分摊风险(如捕时压力),从而导致种群衰退。

2、参数变化

至此,方程中已经有三个可变参数: r , K , A r,K,A rKA
因此有三种情况:
{ K 和 A 不变, r ↑ r 和 A 不变, K ↑ r 和 K 不变, A ↑ \begin{cases} K和A不变,r\uparrow\\ r和A不变,K\uparrow\\ r和K不变,A\uparrow \end{cases} KA不变,rrA不变,KrK不变,A
函数关系可视化为:
在这里插入图片描述

二、Leslic Matrix

假设有这样一个种群 X {X} X,其种群的年龄结构变化符合以下关系:
在这里插入图片描述
(圆圈表示各龄个体的总和,数字表示年龄, F F F 表示生育率, P P P 表示存活到下一龄的概率率)

t 0 t_{0} t0 时刻以向量形式表示各年龄段的个体数:
X → t 0 = [ x 1 t 0 x 2 t 0 x 3 t 0 x 4 t 0 x 5 t 0 ] ,上标为时刻,下标为年龄 \overrightarrow X^{t_{0}}= \begin{bmatrix} x^{t_{0}}_{1}\\ x^{t_{0}}_{2}\\ x^{t_{0}}_{3}\\ x^{t_{0}}_{4}\\ x^{t_{0}}_{5} \end{bmatrix},上标为时刻,下标为年龄 X t0= x1t0x2t0x3t0x4t0x5t0 ,上标为时刻,下标为年龄
在经过 1 1 1 单位的时间后,种群的各年龄段个体数为:
x 1 t 0 + 1 = x 1 t 0 ⋅ F 1 + x 2 t 0 ⋅ F 2 + x 3 t 0 ⋅ F 3 + x 4 t 0 ⋅ F 4 + x 5 t 0 ⋅ F 5 x 2 t 0 + 1 = x 1 t 0 ⋅ P 1 x 3 t 0 + 1 = x 2 t 0 ⋅ P 2 x 4 t 0 + 1 = x 3 t 0 ⋅ P 3 x 5 t 0 + 1 = x 4 t 0 ⋅ P 4 \begin{aligned} &x^{t_{0}+1}_{1}=x^{t_{0}}_{1} \cdot F_{1}+x^{t_{0}}_{2} \cdot F_{2}+x^{t_{0}}_{3} \cdot F_{3}+x^{t_{0}}_{4} \cdot F_{4}+x^{t_{0}}_{5} \cdot F_{5}\\ &x^{t_{0}+1}_{2}=x^{t_{0}}_{1}\cdot P_{1}\\ &x^{t_{0}+1}_{3}=x^{t_{0}}_{2}\cdot P_{2}\\ &x^{t_{0}+1}_{4}=x^{t_{0}}_{3}\cdot P_{3}\\ &x^{t_{0}+1}_{5}=x^{t_{0}}_{4}\cdot P_{4} \end{aligned} x1t0+1=x1t0F1+x2t0F2+x3t0F3+x4t0F4+x5t0F5x2t0+1=x1t0P1x3t0+1=x2t0P2x4t0+1=x3t0P3x5t0+1=x4t0P4
使用矩阵向量的乘积表示为:
X → t 0 + 1 = X → t 0 × [ L ] = [ x 1 t 0 x 2 t 0 x 3 t 0 x 4 t 0 x 5 t 0 ] × [ F 1 F 2 F 3 F 4 F 5 P 1 0 0 0 0 0 P 2 0 0 0 0 0 P 3 0 0 0 0 0 P 4 0 ] \begin{aligned} \overrightarrow X^{t_{0}+1} &=\overrightarrow X^{t_{0}} \times \begin{bmatrix} L \end{bmatrix}\\ &=\begin{bmatrix} x^{t_{0}}_{1}\\ x^{t_{0}}_{2}\\ x^{t_{0}}_{3}\\ x^{t_{0}}_{4}\\ x^{t_{0}}_{5} \end{bmatrix} \times \begin{bmatrix} F_{1} & F_{2} & F_{3} & F_{4} & F_{5}\\ P_{1} & 0 & 0 & 0 & 0 \\ 0 & P_{2} & 0 & 0 & 0\\ 0 & 0 & P_{3} & 0 & 0\\ 0 & 0 & 0 & P_{4} & 0 \end{bmatrix} \end{aligned} X t0+1=X t0×[L]= x1t0x2t0x3t0x4t0x5t0 × F1P1000F20P200F300P30F4000P4F50000
由于给定的种群的初始大小不可能为零,所以 X → t 0 \overrightarrow X^{t_{0}} X t0 为非零向量。
∴ \therefore 存在矩阵 [ L ] \begin{bmatrix}L\end{bmatrix} [L]特征值 r r r,使:
X → t 0 × [ L ] = X → t 0 × r , X → t 0 ≠ 0 \overrightarrow X^{t_{0}} \times \begin{bmatrix} L \end{bmatrix} = \overrightarrow X^{t_{0}} \times r, \overrightarrow X^{t_{0}}\not=0 X t0×[L]=X t0×r,X t0=0
据此便可近似的求出具有特定年龄结构的种群增长率。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Odd_guy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值