生物信息学
文章平均质量分 80
Odd_guy
欢迎相互交流学习
sun_wu_5_3@163.com
展开
-
基于vcf文件计算位点频谱SFS——easySFS
位点频谱(site frequency sperum)是使用遗传数据进行群体历史研究的基础数据,easySFS.py将可以将划分好群体的snp.vcf文件转换为SFS,该脚本输出可适用于和∂a∂i两个进行群体历史研究的主流方法。原创 2024-01-26 17:20:57 · 1258 阅读 · 0 评论 -
基于GATK流程化进行SNP calling
在进行时,以群体基因组重测序数据为例,涉及到的个体基本都是上百个,而其中大多数流程均是重复的步骤。本文将基于GATK进行SNP calling的流程写入循环,便于批量分析。原创 2023-11-20 10:45:04 · 536 阅读 · 0 评论 -
基于GATK(Genome Analysis Toolkit)进行SNP calling
(Genome Analysis Toolkit)是进行DNA和RNAseq数据变异检测的常用工具,目前已成为变异检测的“金标准”。本文提供其与其他软件联合使用进行SNP calling的方法。原创 2023-11-20 09:58:44 · 876 阅读 · 0 评论 -
GWAS全基因组关联分析实战——基于Plink转换vcf数据为二进制
vcf数据是保存变异信息的主要数据格式,plink是进行全基因组关联分析(GWAs)分析的常用工具包,同时提供一系列数据转换、裁剪和遗传统计量计算工具。本文以实际数据提供基因组关联分析方法。原创 2023-11-13 17:26:25 · 1841 阅读 · 0 评论 -
clermontyping安装使用
clermontyping是进行细菌分型的有效工具,本文解决依赖关系,提供基本调用方法。原创 2023-10-23 17:22:51 · 215 阅读 · 0 评论 -
Selective sweep与Genomic island
最近在阅读文献时遇到了==“genomic island”“selective sweep”==比较难理解。之前在一篇综述()中我一度以为自己已经理解了此概念,但是将自己理解的概念运用到研究性文章中却发生了诸多不符……原创 2023-05-14 20:06:20 · 396 阅读 · 0 评论 -
siRNA vs. miRNA
(gene silencing)是生物体中重要的分子生物学过程,一般由(small interference RNA)和(micro RNA)介导。而两种RNA由于其复杂的作用机制和高效的沉默效率,在过去20年来都是分子生物学研究的热点。由于两者的作用机制比较类似,所以在概念上极易混淆。原创 2023-04-16 23:35:20 · 730 阅读 · 0 评论 -
记录自己在编译安装samtools时犯下的低级错误
condasamtools最近在进行基因组SNPs的检测工作,在进行完一个read group的检测工作后,为了了解操作是否正确,想使用查看去重复后的比对情况。因为之前吃过环境污染的亏,所以习惯性的使用conda工具进行软件的安装和对应软件工作环境的管理,但是部分软件包由于其特殊性,conda环境下可能某些功能无法实现,比如samtools……原创 2023-04-14 18:17:31 · 874 阅读 · 0 评论 -
安装conda搭建个人生物信息学平台(Linux-centOS)
conda的安装与使用原创 2023-03-10 15:41:43 · 1062 阅读 · 0 评论 -
基因组特征评估——k-mer analysis
k-mer分析原理,及jellyfish的应用原创 2022-12-09 22:07:31 · 2328 阅读 · 0 评论 -
GenomeScope——jellyfish k-mer分析的下游分析
genomescope2.0的安装和应用原创 2022-12-09 22:02:56 · 2085 阅读 · 0 评论 -
SRA Toolkit简单使用
sra toolkit的安装、配置与基本功能的使用。原创 2022-12-05 19:35:52 · 2486 阅读 · 0 评论 -
连锁不平衡及LD decay analysis
连锁不平衡原创 2022-11-18 11:12:25 · 2564 阅读 · 1 评论 -
GWAs——全基因组关联分析三(关联分析)
GWAs——全基因组关联分析三(关联分析)原创 2022-10-09 10:27:55 · 920 阅读 · 0 评论 -
GWAs——全基因组关联分析二(质控2)
GWAs——全基因组关联分析(质控2)原创 2022-10-02 00:38:43 · 535 阅读 · 0 评论 -
GWAs——全基因组关联分析(质控1)
本内容参考AndriesT. Marees等方法(DOI:10.1002/mpr.1608),使用的程序包为PLINK v1.9,二进制数据来自的模拟数据(祖先来自欧洲西北部的犹他州居民),包含三个二进制数据“.bed”,包含所有患者和健康对照的基因型信息(次文件内容为二进制数据,方便计算机读取,不便于肉眼查看)。“.fam”,包含研究个体的谱系关系(父、母本)、性别和表型信息等。“.bim”,包含SNPs的位置信息(Table 1)。Table 1:PLINK支持的二进制文件后缀内容信息.bed。原创 2022-09-25 15:35:49 · 1353 阅读 · 0 评论 -
GWAs——全基因组关联分析流程
GWAs基本流程原创 2022-09-19 20:35:57 · 8427 阅读 · 0 评论 -
火山图——直观的特征差异可视化
火山图的绘制及解读。原创 2022-09-05 23:57:37 · 7779 阅读 · 0 评论