超市不同时段人流量统计分析

通过对超市不同时段人流量的统计,可以帮助经营者了解运营情况,优化商品布局,评估营销效果,合理分配资源,并预防突发事件,精准的数据为决策提供有力支持。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

日常生活中,人们去超市购买日用品是最多的,而附近多个超市将是竞争比较激烈的,那么超市人流量统计分析,将让你经营更轻松,同时超越竞争对手。
通过人流量的计算来了解运营情况,了解消费者,帮助你进行经营上的决策。而人流量受到的其他因素影响,例如天气、演唱会等,则需要根据自身平台数据结合多方数据源进行深入的分析与挖掘。
如今超市对人流量的统计主要通过客流统计设备,他可以安装在门外上方的天花板上,客流统计设备紧贴天花板就可以了(一般天花板与地面是平行的,跟行人是垂直的)。一般要求安装的时候不要露线在外面,就能做到比较美观,比如商场的照明灯等。当有人经过是自动统计人数,通过设备传到云端存储,这样即实现了人数统计的需求,也满足了分析的前提。

超市不同时段人流量统计分析

大型超市以其低廉的价格和名目繁多的商品,吸引了大量的顾客。超市人流量是一个随季节、气候、货源、人们经济状况以及商家促销手段等多种因素变化的量。对超市的人流量及人员密度分布规律的统计分析结果可以作为确定新风量、排风量、建筑的冷负荷以及安全疏散路线等的重要依据。
而人流量的统计可以分析出商品布局的优势在哪,每个超市或者卖场都是很多种商品,如何去布局,如何放置,都是应该经过精心设计的,一个购物动线设计较好的卖场和一个没有经过设计、随便布局的卖场,销售额可能相差很多。
超市经营者通过利用这些高精度的数据,进行有效的组织运营工作!了解出入口设置的合理程度;从楼层人流量状态分析,进行店面

【资源说明】 1、该资源包括项目的全部源码,下载可以直接使用! 2、本项目适合作为计算机、数学、电子信息等专业的课程设计、期末大作业和毕设项目,作为参考资料学习借鉴。 3、本资源作为“参考资料”如果需要实现其他功能,需要能看懂代码,并且热爱钻研,自行调试。 Python基于深度学习的区域人员计数系统(源码+项目说明).zip ## 1.研究背景与意义 随着人工智能和计算机视觉的快速发展,人员计数系统在各个领域中变得越来越重要。从零售业到交通管理,从安防监控到人流分析,人员计数系统可以提供有价值的数据和信息,帮助决策者做出更好的决策。 然而,传统的人员计数系统往往面临一些挑战。首先,传统的基于传感器的人员计数系统需要大量的设备和布线工作,增加了系统的复杂性和成本。其次,传统的计数方法通常基于简单的规则和算法,对于复杂的场景和变化的环境往往效果不佳。此外,传统的计数系统往往需要人工干预和校正,耗费时间和人力资源。 为了解决这些问题,本研究提出了一种基于深度学习的区域人员计数系统,利用Python编程语言实现。深度学习是一种机器学习的方法,通过模拟人脑神经网络的结构和功能,可以从大量的数据中学习和提取特征,从而实现更准确和智能的计数。 本研究的主要目标是开发一个简单易用、高效准确的人员计数系统,可以在各种场景下使用。具体来说,本研究的贡献包括以下几个方面: 1. 开发基于深度学习的人员计数算法:本研究将利用深度学习的方法,通过训练神经网络模型,实现对人员的准确计数。深度学习的优势在于可以自动学习和提取特征,适应不同的场景和环境。 2. 设计区域人员计数系统的架构:本研究将设计一个完整的区域人员计数系统的架构,包括数据采集、特征提取、模型训练和计数输出等模块。系统将采用Python编程语言实现,具有良好的可扩展性和易用性。 3. 提供部署教程和源码:为了方便其他研究者和开发者使用和扩展本研究的成果,我们将提供详细的部署教程和源码。通过这些资源,其他人可以快速理解和使用本研究的方法和系统。 本研究的意义在于提供了一种新的、基于深度学习的人员计数系统,可以应用于各种领域和场景。与传统的计数方法相比,本系统具有更高的准确性和智能性,可以更好地满足实际需求。此外,通过提供部署教程和源码,本研究还可以促进相关领域的研究和应用的发展。 总之,本研究旨在开发一种基于深度学习的区域人员计数系统,通过Python编程语言实现,并提供详细的部署教程和源码。该系统具有重要的实际应用价值,可以在各个领域中提供有价值的数据和信息,帮助决策者做出更好的决策。 # 2.图片演示 ![2.png](cd1b7e48d05f51026341cf4daa2a602f.webp) ![3.png](da33ec0325a194bb63689ac197d48763.webp) ![4.png](8afe122a8a0289a3b2e07e9fb419aa92.webp) # 3.视频演示 https://www.bilibili.com/video/BV1Rp4y1P7S6/?vd_source=ff015de2d29cbe2a9cdbfa7064407a08 # 4.YOLOv7模型 按照论文,目前模型精度和推理性能比较均衡的是yolov7 模型(对应的开源git版本为0.1版)。根据源码+导出的onnx文件+“张大刀”等的网络图(修改了其中目前我认为的一些bug,增加一些细节)。重新绘制了yoloV7 0.1版本的非常详尽网络结构。注意: 1)其中的特征图结果维度注释是按照箭头的流方向,不是固定的上下方向。 2)输入输出仅仅是指当前模块的输入输出,整体需要根据流方向累乘计算最终的结果。 3)该模型版本没有辅助训练头。 整体上和YOLOV5是相似的,主要是网络结构的内部组件的更换(涉及一些新的sota的设计思想)、辅助训练头、标签分配思想。 ![image.png](b81d774ef527dc52bc877f2fdcfb0319.webp) ## 5.核心代码讲解 #### 5.1 check_img.py 以下是将上述代码封装为一个类的核心部分: ```python import cv2 import numpy as np import os class ImageProcessor: def __init__(self, path, train_file): self.path = path self.train_file = train_file self.num = 0 def process_images(self):
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值