什么是柯西(Cauchy)不等式
对于任意两组实数a1,a2,...,an;b1,b2,...,bna_1, a_2, ..., a_n; b_1, b_2, ..., b_na1,a2,...,an;b1,b2,...,bn, 有∑i=1nai2⋅∑i=1nbi2≥(∑i=1naibi)2\displaystyle \sum_{i = 1}^n a_i^2 \cdot \sum_{i = 1}^n b_i^2 \ge (\sum_{i = 1}^n a_ib_i)^2i=1∑nai2⋅i=1∑nbi2≥(i=1∑naibi)2, 当且仅当aia_iai与bi(i=1,2,...,n)b_i (i = 1, 2, ..., n)bi(i=1,2,...,n)对应成比例, 即a1b1=a2b2=...=anbn\displaystyle \frac{a_1}{b_1} = \frac{a_2}{b_2} = ... = \frac{a_n}{b_n}b1a1=b2a2=...=bnan时等号成立. 这个不等式成为柯西(Cauchy)不等式.
柯西(Cauchy)不等式的证明
(a12+a22+...+an2)(b12+b12+bn2)≥(a1b1+a2b2+...+anbn)2(a_1^2 + a_2^2 + ... + a_n^2)(b_1^2 + b_1^2 + b_n^2) \ge (a_1b_1 + a_2b_2 + ... + a_nb_n)^2(a12+a22+...+an2)(b12+b12+bn2)≥(a1b1+a2b2+...+anbn)2
证明: a12x2−2a1b1x+b12=(a1x−b1)2≥0a22x2−2a2b2x+b22=(a2x−b2)2≥0...an2x2−2anbnx+bn2=(anx−bn)2≥0相加得:(a12+a22+...+an2)x2−2(a1b1+a2b2+...+anbn)x+(ba2+b22+...+bn2)≥01) a12+a22+...+an2=0a1=a2=...=an=0不等式成立2) a12+a22+...+an2≠0令f(x)=(a12+a22+...+an2)x2−2(a1b1+a2b2+...+anbn)x+(ba2+b22+...+bn2)因为a12+a22+...+an2>0且(a12+a22+...+an2)x2−2(a1b1+a2b2+...+anbn)x+(ba2+b22+...+bn2)≥0所以f(x)为一个开口向上恒非负的二次函数所以方程(a12+a22+...+an2)x2−2(a1b1+a2b2+...+anbn)x+(ba2+b22+...+bn2)=0的Δ≤0所以(a12+a22+...+an2)(b12+b12+bn2)≥(a1b1+a2b2+...+anbn)2当Δ=0,即a1b1=a2b2=...=anbn时等号成立综上所述:命题得证.
\begin{aligned}
证明: \: &a_1^2x^2 - 2a_1b_1x + b_1^2 = (a_1x - b_1)^2 \ge 0 \\
&a_2^2x^2 - 2a_2b_2x + b_2^2 = (a_2x - b_2)^2 \ge 0 \\
&...\\
&a_n^2x^2 - 2a_nb_nx + b_n^2 = (a_nx - b_n)^2 \ge 0 \\
&相加得: (a_1^2 + a_2^2 + ... + a_n^2)x^2 - 2(a_1b_1 + a_2b_2 + ... + a_nb_n)x + (b_a^2 + b_2 ^2 + ... + b_n^2) \ge 0 \\
&\begin{aligned}
1) \: & a_1^2 + a_2^2 + ... + a_n^2 = 0 \\
&a_1 = a_2 = ... = a_n = 0 \\
&不等式成立
\end{aligned} \\
&\begin{aligned}
2) \: & a_1^2 + a_2^2 + ... + a_n^2 \ne 0 \\
&令 f(x) = (a_1^2 + a_2^2 + ... + a_n^2)x^2 - 2(a_1b_1 + a_2b_2 + ... + a_nb_n)x + (b_a^2 + b_2 ^2 + ... + b_n^2) \\
&因为 a_1^2 + a_2^2 + ... + a_n^2 > 0 且 (a_1^2 + a_2^2 + ... + a_n^2)x^2 - 2(a_1b_1 + a_2b_2 + ... + a_nb_n)x + (b_a^2 + b_2 ^2 + ... + b_n^2) \ge 0 \\
&所以 f(x) 为一个开口向上恒非负的二次函数 \\
&所以方程 (a_1^2 + a_2^2 + ... + a_n^2)x^2 - 2(a_1b_1 + a_2b_2 + ... + a_nb_n)x + (b_a^2 + b_2 ^2 + ... + b_n^2) = 0的 \Delta \le 0 \\
&所以(a_1^2 + a_2^2 + ... + a_n^2)(b_1^2 + b_1^2 + b_n^2) \ge (a_1b_1 + a_2b_2 + ... + a_nb_n)^2 \\
&当 \Delta = 0, 即 \frac{a_1}{b_1} = \frac{a_2}{b_2} = ... = \frac{a_n}{b_n}时等号成立
\end{aligned} \\
&综上所述: 命题得证.
\end{aligned}
证明:a12x2−2a1b1x+b12=(a1x−b1)2≥0a22x2−2a2b2x+b22=(a2x−b2)2≥0...an2x2−2anbnx+bn2=(anx−bn)2≥0相加得:(a12+a22+...+an2)x2−2(a1b1+a2b2+...+anbn)x+(ba2+b22+...+bn2)≥01)a12+a22+...+an2=0a1=a2=...=an=0不等式成立2)a12+a22+...+an2=0令f(x)=(a12+a22+...+an2)x2−2(a1b1+a2b2+...+anbn)x+(ba2+b22+...+bn2)因为a12+a22+...+an2>0且(a12+a22+...+an2)x2−2(a1b1+a2b2+...+anbn)x+(ba2+b22+...+bn2)≥0所以f(x)为一个开口向上恒非负的二次函数所以方程(a12+a22+...+an2)x2−2(a1b1+a2b2+...+anbn)x+(ba2+b22+...+bn2)=0的Δ≤0所以(a12+a22+...+an2)(b12+b12+bn2)≥(a1b1+a2b2+...+anbn)2当Δ=0,即b1a1=b2a2=...=bnan时等号成立综上所述:命题得证.