柯西-施瓦茨不等式
(Cauchy-Schwarz Inequality)是数学分析中的一个重要不等式,它在向量空间、内积空间等多个领域都有广泛应用。对于实数或复数域上的内积空间,柯西-施瓦茨不等式可以表述为:
对于任意向量 u \mathbf{u} u 和 v \mathbf{v} v 在内积空间中,有:
∣ ⟨ u , v ⟩ ∣ ≤ ∥ u ∥ ∥ v ∥ |\langle \mathbf{u}, \mathbf{v} \rangle| \leq \|\mathbf{u}\| \|\mathbf{v}\| ∣⟨u,v⟩∣≤∥u∥∥v∥
其中, ⟨ u , v ⟩ \langle \mathbf{u}, \mathbf{v} \rangle ⟨u,v⟩ 表示向量 u \mathbf{u} u 和 v \mathbf{v} v 的内积, ∥ u ∥ \|\mathbf{u}\| ∥u∥ 和 ∥ v ∥ \|\mathbf{v}\| ∥v∥ 分别表示向量 u \mathbf{u} u 和 v \mathbf{v} v 的范数。
证明过程
-
考虑特殊情况:
当 v = 0 \mathbf{v} = \mathbf{0} v=0 时,显然不等式成立,因为 ⟨ u , v ⟩ = 0 \langle \mathbf{u}, \mathbf{v} \rangle = 0 ⟨u,v⟩=0 且 ∥ v ∥ = 0 \|\mathbf{v}\| = 0 ∥v∥=0。 -
一般情况:
当 v ≠ 0 \mathbf{v} \neq \mathbf{0} v=0 时,考虑向量 u − λ v \mathbf{u} - \lambda \mathbf{v} u−λv,其中 λ \lambda λ 是一个标量。我们选择 λ = ⟨ u , v ⟩ ∥