柯西施瓦茨不等式证明过程

柯西-施瓦茨不等式(Cauchy-Schwarz Inequality)是数学分析中的一个重要不等式,它在向量空间、内积空间等多个领域都有广泛应用。对于实数或复数域上的内积空间,柯西-施瓦茨不等式可以表述为:

对于任意向量 u \mathbf{u} u v \mathbf{v} v 在内积空间中,有:
∣ ⟨ u , v ⟩ ∣ ≤ ∥ u ∥ ∥ v ∥ |\langle \mathbf{u}, \mathbf{v} \rangle| \leq \|\mathbf{u}\| \|\mathbf{v}\| u,vu∥∥v

其中, ⟨ u , v ⟩ \langle \mathbf{u}, \mathbf{v} \rangle u,v 表示向量 u \mathbf{u} u v \mathbf{v} v 的内积, ∥ u ∥ \|\mathbf{u}\| u ∥ v ∥ \|\mathbf{v}\| v 分别表示向量 u \mathbf{u} u v \mathbf{v} v 的范数。

证明过程

  1. 考虑特殊情况
    v = 0 \mathbf{v} = \mathbf{0} v=0 时,显然不等式成立,因为 ⟨ u , v ⟩ = 0 \langle \mathbf{u}, \mathbf{v} \rangle = 0 u,v=0 ∥ v ∥ = 0 \|\mathbf{v}\| = 0 v=0

  2. 一般情况
    v ≠ 0 \mathbf{v} \neq \mathbf{0} v=0 时,考虑向量 u − λ v \mathbf{u} - \lambda \mathbf{v} uλv,其中 λ \lambda λ 是一个标量。我们选择 λ = ⟨ u , v ⟩ ∥

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

司南锤

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值