矩阵手册(六)—— Cauchy–Schwarz 不等式及其证明

本文详细阐述了Cauchy–Schwarz不等式的数学原理及其证明过程,包括向量投影的概念和柯西不等式的其他形式,并通过构造函数法提供了新的证明思路。此外,文章还探讨了不等式的实际应用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. Cauchy–Schwarz 不等式

|u,v|uv

2. 证明

v=0 u,v=0 时,等式成立,然后排除这两种情况,记 u v 的投影向量为 uv ,则:

uv=u,vvv,v

或者这样理解,向量=方向&长度, u v 上的投影长度为 ucosθ ,而方向是向量 v 的方向,即 vv,所以 uv=ucosθvv ,然后分子分母同时乘以 v uv=u,vvv,v

z=uuv=uu,vvv,v 必然正交于 v

u=uv+zu2=u,v2v2+z2u,v2v2

得证。

3. 柯西不等式的其他形式

(ia2i)(ib2i)(iaibi)2

这里提供一个新的证明思路,构造函数法

f(x)=ia2ix22iaibix+ib2i=i(aixbi)20

所以其判别式恒小于等于0,也即:

4(iaibi)24ia2iib2i

References

[1] Cauchy–Schwarz inequality
[2] 矩阵手册(五)—— 内积

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

五道口纳什

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值