最长有序子序列 经典DP

给一串数据

I012345678
num[I]147258369

来得到其对应位上的数据的最长有序子序列的长度L;


I012345678
num[i]147258369
F[i]123234345


这是个经典的DP问题。

在这里我们利用F[i]的数组;

来储存其之前数据的最长有序子序列

进而得到后面的。



/*最长有序子序列*/


#include<iostream>
using namespace std;

int main()
{
	int num[]={1,4,7,2,5,8,3,6,9};
	int F[9];
	for(int i=0;i<=8;i++)
	{
		F[i]=1;//全都置为1,本身也是最长有序子序列的一个元素
	}
	for(int i=0;i<=8;i++)
	{
		cout<<F[i]<<" ";
	}
	cout<<endl;
	for(int i=0;i<=8;i++)
	{
		for(int j=0;j<i;j++)
		{
			if(num[j]<num[i])
				if(F[i]<F[j]+1)//当元素小于前面较之小元素的+1值才进行更新。
				{
					F[i]=F[j]+1;
				}
		} 
	}
	for(int i=0;i<=8;i++)
	{
		cout<<F[i]<<" ";
	}
	return 0;
}



刚开始写成了

if(num[j]<num[i])
<span style="white-space:pre">	</span>F[i]=F[j]+1;
 
后来发现这样只计算了对应位置前面小于该值的数目。并没有计算出最长有序子序列。 

因此当F[i]小于F[j]+1后才进行更新能保留住前面的最长有序子序列的值。



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值