机器学习分类任务中的评估指标

本文探讨了机器学习中用于评估分类模型的常用指标,包括混淆矩阵、查准率、查全率、精准率、F1分数、TPR、FPR、ROC曲线和AUC。通过简化概念,帮助读者更好地理解这些指标在模型选择和调参中的作用。
摘要由CSDN通过智能技术生成

刚开始接触机器学习的时候,对于这个评估指标搞的很是头疼,西瓜书模型评估与选择章节介绍了这些指标,但是还是依然觉得有点难于理解。有些知识当你不用的时候,过一段时间发现就忘了,究其原因,可能当时学的时候,就没有理解的深刻,再加上时间一冲淡,每次就像看学习新知识。
言归正传,只是提供一下掌握这个问题最核心的逻辑梳理,具体的知识介绍,我会在下面放经典文章,不多,但是绝对经典!

我们如何判断自己选择的机器学习模型是否足够好,而评估指标给我们提供了一种选择,依靠评估指标我们就可以做到调参和模型的选择。
1、首先就是混淆矩阵中的四个让人讨厌的组合,因为记不住,也不足够理解,那么如何好理解,怎么简单起来?

P/N:代表预测结果
T/F:代表预测结果是否正确

于是乎,就会有四种组合,我们从右往左看,先看预测结果,再看预测是否准确

TP:预测为1,预测正确,即实际1
FP:预测为1,预测错误,即实际0
FN:预测为0,预测错确,即实际1
TN:预测为0,预测正确即,实际0

这样,我们就理解了这四个东西到底代表什么意思,有了这四个玩意,我们就有了混淆矩阵。
2、混淆矩阵有了之后,就是接下来的三个指标:查准率、精准率、查全率
重要的不是指标的公式是什么样的,而是

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值