1.1映射与函数

1.1映射与函数

1.1.1 求下列函数的自然定义域

(1) y = 3 x + 2 y=\sqrt{3x+2} y=3x+2
解 :   ∵ 根号中的值是大于 0 ∴ 3 x + 2 > 0 ∴ x > − 2 3 ∴ x > − 2 3 即 x ∈ [ − 2 3 , + ∞ ] \begin {align} 解:\ &\because{根号中的值是大于0}\\ &\therefore{3x+2 >0}\\ &\therefore{x>-\frac{2}{3}}\\ &\therefore{x>-\frac{2}{3}}\\ &即 x \in [-\frac{2}{3},+\infty] && \end{align} : 根号中的值是大于03x+2>0x>32x>32x[32,+]
(2) y = 1 1 − x 2 y=\frac{1}{1-x^2} y=1x21

解 :   ∵ 1 − x 2 ≠ 0 ∴ x 2 ≠ 1 ∴ x ≠ 1 a n d x ≠ − 1 ∴ x ∈ [ − ∞ , − 1 ) ∪ [ − 1 , 1 ] ∪ ( 1 , ∞ ] \begin {align} 解:\ &\because 1-x^2 \neq 0\\ &\therefore x^2\neq1\\ &\therefore x\neq1 \hspace{1em}and \hspace{1em}x\neq-1\\ &\therefore x \in[-\infty,-1) \cup [-1,1] \cup (1,\infty] &&\end{align} : 1x2=0x2=1x=1andx=1x[,1)[1,1](1,]
(3) y = 1 x − 1 − x 2 y=\frac{1}{x}-\sqrt{1-x^2} y=x11x2
解 :   ∵ 1 − x 2 > 0 ∴ x 2 < 1 ∴ x < 1 a n d x > − 1 又 ∵ 1 x 中 x ≠ 0 ∴ x ∈ [ − 1 , 0 ) ∪ ( 0 , 1 ] \begin{align}解:\ &\because 1-x^2 > 0\\ &\therefore x^2<1\\ &\therefore x<1 \hspace{1em}and \hspace{1em}x>-1\\ &又\because \frac{1}{x}中x\neq0\\ &\therefore x \in[-1,0) \cup(0,1]\\ &&\end{align} : 1x2>0x2<1x<1andx>1x1x=0x[1,0)(0,1]
(4) y = 1 4 − x 2 y=\frac{1}{\sqrt{4-x^2}} y=4x2 1
解 :   ∵ 4 − x 2 > 0 ∴ 4 − x 2 > 0 ∴ 2 > x > − 2 ∴ x ∈ ( − 2 , 2 ) \begin{align} 解:\ &\because\sqrt{4-x^2}>0\\ &\therefore4-x^2 >0\\ &\therefore2>x>-2\\ & \therefore x \in(-2,2) &&\end{align} : 4x2 >04x2>02>x>2x(2,2)
(5) y = sin ⁡ x y=\sin{\sqrt{x}} y=sinx
解 :   ∵ x > = 0. ∴ x ∈ [ 0 , + ∞ ] \begin{align} 解:\ &\because x>=0.\\ &\therefore x \in[0,+\infty] &&\end{align} : x>=0.x[0,+]
(6) y = tan ⁡ ( x + 1 ) y=\tan(x+1) y=tan(x+1)
解 :   ∵ x + 1 ≠ k π + π 2 , k ∈ Z ∴ x ≠ k π + π 2 − 1 , k ∈ Z . ∴ { x ∣ x ≠ k π + π 2 − 1 , k ∈ Z } \begin{align} 解:\ &\because x+1\neq k\pi+\frac{\pi}{2},k \in Z\\ & \therefore x\neq k\pi+\frac{\pi}{2}-1,k \in Z.\\ & \therefore\{x | x\neq k\pi+\frac{\pi}{2}-1,k \in Z\} &&\end{align} : x+1=+2π,kZx=+2π1,kZ.{xx=+2π1,kZ}
(7) y = arcsin ⁡ ( x − 3 ) y=\arcsin(x-3) y=arcsin(x3)
解 :   ∵ 该式是 y = sin ⁡ ( x ) + 3 的反函数 . ∴ y − 3 ∈ [ − 1 , 1 ] 即 x − 3 ∈ [ − 1 , 1 ] ∴ x ∈ [ 2 , 4 ] \begin{align} 解:\ &\because 该式是y=\sin(x)+3的反函数.\\ & \therefore y-3 \in[-1,1] 即 x-3 \in[-1,1] \\ & \therefore x\in[2,4] &&\end{align} : 该式是y=sin(x)+3的反函数.y3[1,1]x3[1,1]x[2,4]
(8) y = 3 − x + arctan ⁡ 1 x y=\sqrt{3-x}+\arctan\frac{1}{x} y=3x +arctanx1
解 :   ∵ y = arctan ⁡ ( x ) 与 y = t a n ( x ) 互为反函数 ∴ 1 x ∈ R a n d x ≠ 0 ∴ x ∈ [ − ∞ , 0 ) ∪ ( 0 , + ∞ ] 又 ∵ 3 − x > 0 ∴ x < 3 由 a , b 两式求得 x ∈ [ − ∞ , 0 ) ∪ ( 0 , 3 ] \begin{align} 解:\ &\because y=\arctan (x) 与 y=tan(x)互为反函数\\ & \therefore \frac{1}{x} \in R and x\neq0\\ & \therefore x \in [-\infty,0) \cup(0,+\infty]\tag{a}\\ & 又\because 3-x>0\\ & \therefore x<3 \tag{b}\\ & 由a,b两式求得x\in[-\infty,0) \cup(0,3] &&\end{align} : y=arctan(x)y=tan(x)互为反函数x1Randx=0x[,0)(0,+]3x>0x<3a,b两式求得x[,0)(0,3](a)(b)
(9) y = l n ( x + 1 ) y=ln(x+1) y=ln(x+1)
解 :   ∵ x + 1 > 0 ∴ x > 1 ∴ x ∈ [ 1 , + ∞ ] \begin{align} 解:\ &\because x+1>0\\ & \therefore x>1\\ &\therefore x \in[1,+\infty] &&\end{align} : x+1>0x>1x[1,+]
(10) y = e 1 x y=e^{\frac{1}{x}} y=ex1
解 :   ∵ x ≠ 0 ∴ x ∈ [ − ∞ , 0 ) ∪ ( 0 , + ∞ ] . \begin{align} 解:\ &\because x\neq0\\ & \therefore x \in[-\infty,0)\cup(0,+\infty].\\ &&\end{align} : x=0x[,0)(0,+].

1.1.2 下列各题中,函数 f ( x ) 和 g ( x ) 是否相同?为什么? 下列各题中,函数f(x)和g(x)是否相同?为什么? 下列各题中,函数f(x)g(x)是否相同?为什么?

(1) f ( x ) = l g x 2 , g ( x ) = 2 l g x f(x)=lg{x^2},g(x)=2lg{x} f(x)=lgx2,g(x)=2lgx
解 :   f ( x ) 的定义域为 x ∈ ( − ∞ , 0 ) ∪ ( 0 , + ∞ ) g ( x ) 的定义域 x ∈ ( 0 , + ∞ ) ∵ 两个函数的定义域不相同 ∴ 函数 f ( x ) 和函数 g ( x ) 不相同 \begin{align} 解:\ &f(x)的定义域为x\in(-\infty,0)\cup(0,+\infty) g(x)的定义域x \in(0,+\infty) \\ &\because 两个函数的定义域不相同\\ & \therefore 函数f(x)和函数g(x)不相同\\ &&\end{align} : f(x)的定义域为x(,0)(0,+)g(x)的定义域x(0,+)两个函数的定义域不相同函数f(x)和函数g(x)不相同

  • 函数图像
    (2) f ( x ) = x , g ( x ) = x 2 f(x)=x,g(x)=\sqrt{x^2} f(x)=x,g(x)=x2
    解 :   ∵ 两函数的 x 范围相同,但是两函数的值域不同, f ( x ) ∈ R g ( x ) ∈ [ 0 , + ∞ ) ∴ 函数 f ( x ) 和函数 g ( x ) 不相同 \begin{align} 解:\ &\because 两函数的x范围相同,但是两函数的值域不同,f(x) \in R \hspace{1em} g(x) \in [0,+\infty)\\ & \therefore 函数f(x)和函数g(x)不相同 &&\end{align} : 两函数的x范围相同,但是两函数的值域不同,f(x)Rg(x)[0,+)函数f(x)和函数g(x)不相同
    (3) f ( x ) = x 4 − x 3 3 , g ( x ) = x ∗ x − 1 3 f(x)=\sqrt[3]{x^4-x^3},g(x)=x*\sqrt[3]{x-1} f(x)=3x4x3 ,g(x)=x3x1
    解 :   ∵ 两式的定义域 ( 均 ∈ R ) 相同中同时两个式子的值域也相同 ( 均 ∈ R ) ∴ 函数 f ( x ) 和函数 g ( x ) 相同 \begin{align} 解:\ &\because 两式的定义域(均 \in R)相同中同时两个式子的值域也相同(均\in R)\\ &\therefore 函数f(x)和函数g(x)相同 &&\end{align} : 两式的定义域(R)相同中同时两个式子的值域也相同(R)函数f(x)和函数g(x)相同
    (4) f ( x ) = 1 , g ( x ) = s e x 2 x − tan ⁡ 2 x f(x)=1,g(x)=sex^2 x-\tan^2x f(x)=1,g(x)=sex2xtan2x
    注: s e x x = 1 cos ⁡ x \color{red}注:sex x=\frac{1}{\cos x} 注:sexx=cosx1
    解 :   ∵ 两式子的定义域不相同, f ( x ) 定义域 : x ∈ R , g ( x ) 定义域 { x ∣ x ≠ k π + π 2 , k ∈ ‘ Z } ∴ 函数 f ( x ) 和函数 g ( x ) 不相同 \begin{align} 解:\ &\because 两式子的定义域不相同,f(x) 定义域:x\in R,g(x) 定义域\{x|x \neq k\pi+\frac{\pi}{2},k\in `Z \} \\ & \therefore函数f(x)和函数g(x)不相同 &&\end{align} : 两式子的定义域不相同,f(x)定义域:xR,g(x)定义域{xx=+2π,kZ}函数f(x)和函数g(x)不相同

1.1.3 设 { ∣ sin ⁡ x ∣ , ∣ x ∣ < π 3 0 , ∣ x ∣ ≥ π 3 设\begin{cases}|{\sin x}|,|x|<\frac{\pi}{3} \\ \quad0,\quad|x|\ge \frac{\pi}{3}\end{cases} {sinx,x<3π0,x3π

求 φ ( π 3 ) , φ ( π 4 ) , φ ( π 4 ) φ ( − 2 ) , 求作出函数 y = φ ( x ) 的图形 求\varphi (\frac{\pi}{3}),\varphi (\frac{\pi}{4}),\varphi (\frac{\pi}{4})\varphi (-2),求作出函数y=\varphi(x)的图形 φ(3π),φ(4π),φ(4π)φ(2),求作出函数y=φ(x)的图形
解 :   ∵ 由上式可知 π 3 , − 2 均 ∣ x ∣ ≥ π 3 . ∴ φ ( π 3 ) = 0 , φ ( π 4 ) = ∣ s i n ( π 4 ) ∣ = 2 2 , φ ( π 4 ) = = ∣ s i n ( − π 4 ) ∣ = 2 2 , φ ( − 2 ) = 0 \begin{align} 解:\ &\because 由上式可知\frac{\pi}{3},-2 均|x|\ge \frac{\pi}{3}.\\ & \therefore\varphi (\frac{\pi}{3})=0, \varphi (\frac{\pi}{4})=|sin(\frac{\pi}{4})|=\frac{\sqrt{2}}{2}, \varphi (\frac{\pi}{4})==|sin(-\frac{\pi}{4})|=\frac{\sqrt{2}}{2}, \varphi (-2)=0 &&\end{align} : 由上式可知3π,2x3π.φ(3π)=0,φ(4π)=sin(4π)=22 ,φ(4π)==sin(4π)=22 ,φ(2)=0

  • 画图(分段函数)
    在这里插入图片描述
import matplotlib.pyplot as plt  
import numpy as np  
x = np.linspace(-1.5,1.5,1000)  #为了让sin(x)的线显示的比较平滑,因此选取的区间较小
interval0 = [1 if (np.abs(i)>=np.pi/3) else 0 for i in x]  
interval1 = [1 if (np.abs(i)<np.pi/3) else 0 for i in x]  
y=np.abs(np.sin(x))*interval1+0  
plt.plot(x,y)  
plt.show()

1.1.4试论证下列函数在指定区间内的单调性

(1) y = 1 1 − x y=\frac{1}{1-x} y=1x1
解 :   ∵ 暂未更新 ∴ 1 + 2 = 3. \begin{align} 解:\ &\because 暂未更新\\ & \therefore 1+2= 3.\\ &&\end {align} : 暂未更新1+2=3.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值