机器学习(六)——神经网络

目录

 

 

一、前言

二、非线性假设

三、模型展示

四、例子与直觉理解

五、神经网络多元分类


 

一、前言

  1. 吴恩达视频课第九章神经网络笔记
  2. 图片与例子均来自吴恩达视频课截图
  3. 如吴恩达老师视频课所说,很多教材将θ成为权重,此处依然采用参数这个说法
  4. 因为正则化的内容比较少,这一章的学习与上一章正则化的学习都是昨天一起学的,学完就没时间做笔记,今天同时把两篇一起更新了

二、非线性假设

 

神经网络是一个很古老的算法,不过在很长的一段时间内受计算机的机能所限,这个算法没有太大的进展。直到了现在,计算机的飞速发展,计算科学家们又重新拾起了神经网络这一个强大的算法。在一些特征值很多的问题中,如果我们用普通的线性回归和Logistics回归的话,计算量会很大很大,复杂度会成几何式增长,同时也会很容易产生过拟合的现象。神经网络就很适合计算机图像识别,语音识别这种特征量特别多的问题。

 

三、模型展示

神经网络算法是模拟人类大脑工作的原理。人类大脑里充满了这样的神经元。神经元会通过轴突发送高于一定阀值的神经信号到达下一个神经元,这样不断的传递信息,来达到各种功能。

 

 

在神经网络中我们用一个很简单的模型来模拟神经网络:

 

不同的数据进入这个黄色的圆圈里通过计算后输出,这一个过程来模拟神经元的工作。这个h(x)就是激励函数。必要时我们可以在输入的结点加上一个x_0节点来当做偏置单元,不过约定熟成的将这个单元的数值设置为1。


而神经网络就是一组多个这样的神经元模型链接在一起形成的一个网络模型,比如下图所示:

 

 

Layer1层称为输入层,输入我们的特征值x_1,x_2,x_3.....x_n。

Layer2层到最一层之前都叫做隐藏层。为了简化模型,上图只给出一层隐藏层,即Layer2。

最后一层,即图中的Layer3层我们就叫做输出层,输出最终假设的结果。


神经网络的计算过程,需要注意的是计算的时候需要加上偏置单元:

这里的θ是每一条连线上的权重矩阵,下标的十位数表示是第几个输入元,个位表示是第几条连线,上标表是第几层的参数矩阵。而这里的g(z)就是sigmoid函数。

 

四、例子与直觉理解

 

将通过例子来直观的理解神经网络的工作过程。这次通过简单的异或运算。

就如下图左图,当然也可以复杂为下图的右图

如下图,红叉表示为1,蓝圈表示0。

 

先构建一个神经元节点来表示逻辑和的运算,分别给每一条链接上的参数分别赋值-30,20,20。这样我们神经元计算的也就是h(x)= g(20*x_1 + 20 * x_2 + -30)。根据sigmoid的特点,当z=4.6时2,g(z)≈0.99,这已经是一个无限趋于1的值。根据函数的对称性,z=-4.6时,g(z)≈0.01,同理是一个无限趋于0的值。

 

 

再构建一个神经元节点来表示逻辑和的运算,分别给每一条链接上的参数分别赋值-10,20,20。这样神经元计算的也就是h(x)= g(20*x_1 + 20 * x_2 -10), 分别再把四种不同的输入进去来看看这个神经元的计算结果。

 

 

可以构建如下三个神经元

 

五、神经网络多元分类

 

神经网络也可以进行分类这里也是举个例子。

上述神经网络由四个输出,每个输出分别对应为行人,汽车,摩特车与卡车。

当得到的输出结果为\begin{bmatrix} 1 & 0 & 0 & 0 \\ \end{bmatrix} ^T,便将其归为行人,若\begin{bmatrix} 0 & 1 & 0 & 0 \\ \end{bmatrix} ^T便将其归为汽车。

 

当然日常生活中可以同时归为好几个类别,都可以通过0,1来表示是否归为该类。


 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
卷积神经网络(Convolutional Neural Network,CNN)是一种机器学习算法,其主要应用于图像识别、计算机视觉和模式识别等领域。CNN模型的设计灵感来源于科学家们对于生物视觉系统的研究。该算法的核心概念是通过卷积层、池化层和全连接层的组合,对输入的图像进行特征提取和分类。 在CNN中,卷积层是该模型的主要组成部分之一。通过定义一组卷积核(或过滤器),卷积层可以对输入的图像进行滤波操作,将原始图像中的特定特征(例如边缘和纹理)提取出来,并生成一系列特征图。这些特征图可以被认为是对原始图像进行不同尺度和方向的特征提取。 在经过卷积层之后,通常会接着使用池化层来进行下采样操作。池化层的主要目的是减小特征图的尺寸,同时保留重要的特征信息。最常见的池化操作是最大池化,它通过从特定区域选择最大值来减小特征图的尺寸。 最后,经过卷积层和池化层的多次迭代后,最后会以全连接层作为输出层,进行分类任务。全连接层的每个节点都与前一层的所有节点相连接,主要用于将最后一层的特征进行整合,并根据特征进行分类或回归。 相比于传统机器学习算法,CNN在处理图像任务方面具有更好的性能。这是因为卷积层可以通过共享权重和局部连接的方式进行参数的共享,大大减少了需要训练的参数数量,并且能够有效处理图像的平移不变性。此外,卷积神经网络还可以通过堆叠多个卷积层和全连接层来构建深层网络模型,从而进一步提高模型的性能。 总而言之,卷积神经网络是一种强大的机器学习算法,特别适用于图像识别和计算机视觉任务。通过卷积层、池化层和全连接层的组合,CNN可以有效地提取图像中的特征,并进行分类或回归等任务。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值