FGSM(Fast Gradient Sign Method)算法源码解析

论文链接:https://arxiv.org/abs/1412.6572
源码出处:https://github.com/Harry24k/adversarial-attacks-pytorch/tree/master


源码

import torch
import torch.nn as nn

from ..attack import Attack


class FGSM(Attack):
    r"""
    FGSM in the paper 'Explaining and harnessing adversarial examples'
    [https://arxiv.org/abs/1412.6572]

    Distance Measure : Linf

    Arguments:
        model (nn.Module): model to attack.
        eps (float): maximum perturbation. (Default: 8/255)

    Shape:
        - images: :math:`(N, C, H, W)` where `N = number of batches`, `C = number of channels`,        `H = height` and `W = width`. It must have a range [0, 1].
        - labels: :math:`(N)` where each value :math:`y_i` is :math:`0 \leq y_i \leq` `number of labels`.
        - output: :math:`(N, C, H, W)`.

    Examples::
        >>> attack = torchattacks.FGSM(model, eps=8/255)
        >>> adv_images = attack(images, labels)

    """
    def __init__(self, model, eps=8/255):
        super().__init__("FGSM", model)
        self.eps = eps
        self.supported_mode = ['default', 'targeted']

    def forward(self, images, labels):
        r"""
        Overridden.
        """
        self._check_inputs(images)

        images = images.clone().detach().to(self.device)
        labels = labels.clone().detach().to(self.device)

        if self.targeted:
            target_labels = self.get_target_label(images, labels)

        loss = nn.CrossEntropyLoss()

        images.requires_grad = True
        outputs = self.get_logits(images)

        # Calculate loss
        if self.targeted:
            cost = -loss(outputs, target_labels)
        else:
            cost = loss(outputs, labels)

        # Update adversarial images
        grad = torch.autograd.grad(cost, images,
                                   retain_graph=False, create_graph=False)[0]

        adv_images = images + self.eps*grad.sign()
        adv_images = torch.clamp(adv_images, min=0, max=1).detach()

        return adv_images

解析

FGSM的全称是Fast Gradient Sign Method(快速梯度下降法),在白盒环境下,通过求出损失cost对输入的导数,然后用符号函数sign()得到其具体的梯度方向,接着乘以一个步长eps,得到的“扰动”加在原来的输入上就得到了在FGSM攻击下的样本。
可以仔细回忆一下,在神经网络的反向传播当中,我们在训练过程时就是沿着梯度下降的方向来更新更新 w , b w,b w,b的值。这样做可以使得网络往损失cost减小的方向收敛。简单来说,梯度方向代表了损失cost改变速度最快的方向,FGSM算法假设目标损失函数 J ( x , y ) J(x,y) J(x,y) x x x之间是近似线性的,即 J ( x , y ) ≈ w T x J(x ,y)≈w^Tx J(x,y)wTx,所以沿着梯度上升的方向改变输入 x x x可以增大损失,从而达到使模型分类错误的目的。具体做法是在图像上加一个扰动 η \eta η η = ϵ s i g n ( ▽ x J ( θ , x , y ) ) \eta= \epsilon sign(\triangledown_{x}J(\theta,x,y)) η=ϵsign(xJ(θ,x,y)),其中 ▽ x \triangledown_{x} x即梯度, ϵ \epsilon ϵ即步长,也就是每个像素扰动的最大值。
若是无目标攻击,综上所述,公式如下: X a d v = X + ϵ s i g n ( ▽ x J ( X , y t r u e ) ) X^{adv}=X+\epsilon sign(\triangledown_xJ(X,y_{true})) Xadv=X+ϵsign(xJ(X,ytrue))其中, y t r u e y_{true} ytrue为样本 X X X的真实标签。
若是有目标攻击,则需要增加扰动去逼近目标标签,也就是要让样本与目标标签之间损失减小,公式如下: X a d v = X − ϵ s i g n ( ▽ x J ( X , y t a r g e t ) ) X^{adv}=X-\epsilon sign(\triangledown_xJ(X,y_{target})) Xadv=Xϵsign(xJ(X,ytarget))其中, y t a r g e t y_{target} ytarget即为目标标签,目标标签的选取有多种方式,例如可以选择与真实标签相差最大的标签,也可以随机选择除真实标签外的标签。

forward()函数就是攻击过程,输入图像images和标签y,即可返回对抗图像adv_images
images = images.clone().detach().to(self.device)clone()将图像克隆到一块新的内存区(pytorch默认同样的tensor共享一块内存区);detach()是将克隆的新的tensor从当前计算图中分离下来,作为叶节点,从而可以计算其梯度;to()作用就是将其载入设备。
target_labels = self.get_target_label(images, labels):若是有目标攻击的情况,获取目标标签。目标标签的选取有多种方式,例如可以选择与真实标签相差最大的标签,也可以随机选择除真实标签外的标签。
loss = nn.CrossEntropyLoss():设置损失函数为交叉熵损失。
images.requires_grad = True:将这个参数设置为True,pytorch就会在程序运行过程中自动生成计算图,供计算梯度使用。
outputs = self.get_logits(images):获得图像的在模型中的输出值。
cost = -loss(outputs, target_labels):有目标情况下计算损失
cost = loss(outputs, labels):无目标情况下计算损失
grad = torch.autograd.grad(cost, images, retain_graph=False, create_graph=False)[0]costimages求导,得到梯度grad
adv_images = images + self.eps*grad.sign():根据公式在原图像上增加一个扰动,得到对抗图像。
adv_images = torch.clamp(adv_images, min=0, max=1).detach():将images中大于1的部分设为1,小于0的部分设为0,防止越界。

思考

FGSM算法假设目标损失函数 J ( x , y ) J(x,y) J(x,y) x x x之间是近似线性的,但是这个线性假设不一定正确,如果它们之间不是线性的,那么在 ( 0 , ϵ s i g n ( ▽ x J ( θ , x , y ) ) ) (0,\epsilon sign(\triangledown_{x}J(\theta,x,y))) (0,ϵsign(xJ(θ,x,y)))之间是否存在某个扰动,使得 J J J增加的也很大,此时 x x x的修改量就可以小于 ϵ \epsilon ϵ。于是,有学者就提出迭代的方式来找各个像素点的扰动,也就是BIM算法,具体可以查看下一篇博客

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值