自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(11)
  • 收藏
  • 关注

原创 FAST_LIO_LOCALIZATION重定位模块,在ubuntu18、ros melodic、python2.7、livox ros driver2环境下安装流程及相关报错解决

注意这里的rosnumpy和open3d都需要在python2.7的环境下进行安装,因为有的人linux下安装了多个python版本,有2.7、3.5、3.6等版本,如果你在python3.6下安装了open3d,你在运行代码的时候一定会报错找不到open3d模块的,这里一定要注意,一定要在python2.7环境下安装。有一点不甚明确,如果单独编译FAST_LIO_LOCALIZATION,可能需要在src下增加一定的依赖一块编译,如livox_ros_driver2,单独source这个代码可能不行。

2024-07-30 09:33:11 1007

原创 ubuntu18.04下不依赖ros安装serial库/源码编译catkin

很多网友提出要更改catkin依赖,因为这个装ros太麻烦了,源码编译catkin又容易因为conda等问题,造成python版本不一致,产生catkin package版本不对的报错,所以直接找不依赖catkin的serial,可能获得的安装包功能没有catkin版本的全(作者死活不更新版的无catkin源码,是网友的pull request)装好了之后还是有报错,考虑环境变量还是设置的conda的,还有从网上摘下来一条对应装catkin package的指令,注释掉之后发现能够cmake。

2024-03-25 10:25:04 1101

原创 VSCODE中,配置ros melodic自带的pcl1.8产生的一系列报错记录

关于头文件能不能在编译中找到的,还有tasks.json里面的路径设置,在改正确的版本中,使用了cmakelist里面包含对应的目录,使用了shell模式,调用cmake完成一系列运行的指令。使用了几个参考的方式,发现这个报错主要是安装了多个版本的cmake,经过查看原始目录,发现在usr/share目录下没有cmake-3.26,使用搜索发现,这版本的cmake安装在了。主要就是在c_cpp_properties.json文件里面,没有正确配置头文件的路径,应该把需要的几个库的路径的都包含进去。

2024-03-06 11:21:20 1752

原创 vscode中,使用ros自带的pcl配置代码并编译时,报错:在函数“xx”中: 对“多个函数 ”未定义的引用

编译时报错,存在多个未定义的引用,如在函数‘main’中:/home/nvidia/Music/fitline/fit.cpp:20:对‘pcl::visualization::PCLVisualizer::PCLVisualizer(std::__cxx11::basic_string const&, bool)’未定义的引用。

2024-03-06 11:10:41 1264

原创 PCL拟合多条直线的代码-学习解读

所有点输入算法,随机选取m个点做最小二乘拟合,使用直线模型,拟合出一条直线来,然后设置阈值记录在这条直线附近的点数量。迭代n次,取能产生最多附近点的直线,作为拟合的第一个结果。然后对剩余的点继续这一个过程,拟合出第二条。继续拟合直到剩余点不符合拟合下限,退出计算。死循环的条件:在剩余的点数高于拟合下限的情况下,拟合出的直线阈值周围的点数量为0,也就是带不走更多的点,模型会一直计算下去,拟合成同一条直线但是不减少剩余点的数量。问题:PCL中的ransac算法为什么不会死循环,过程设计区别在哪里。

2023-12-20 16:05:22 725 1

原创 深度学习中,进行目标检测时降低误检率的可能方向汇总

一旦出现误报,用户就会点下这个按钮,然后这个按钮的bbox就被当成一个template,把他的feature保存下来,接下来3分钟内如果还有要报的bbox,拿2个feature做similarity,如果很similar,就直接ignore不报警。如果总是对某种类型的目标误检,可以增加一些相应的样本到训练集中去,提高模型的分辨能力,可以在不降低召回的情况下降低误检。正样本的数量远远小于负样本,这样训练出来的分类器的效果总是有限的,会出现许多false positive。

2023-06-30 17:03:48 3096 2

转载 目标检测图像数据集制作的心得总结

你指出的两种情况的数据集,可能各有你说优点,例如“图片少但物体多的数据集,可能可以减少正负样本不平衡”,但是深度学习的目的是为了找寻casual factor,从而得出正确的结果,我个人浅见,觉得你关于“再喂几亿张没有狗的图片训练”其实没啥意义。5、重叠规则:当两个目标物体有重叠的时候,只要不是遮挡超过一半的就可以框的(遮挡范围需要根据算法识别情况制定),允许两个框有重叠的部分。1)采集的数据集尽量保证你要做的目标检测不同类之间样本平衡,就是各个目标检测的类在你的数据中出现的次数差不多;

2023-06-19 15:11:15 2230 8

原创 CADP——监控视角下的交通事故数据集介绍

解决道路交通安全自动时空注释研究缺乏公开数据的问题。

2023-05-05 11:20:41 3271 11

原创 Pycharm常用快捷键,方便

ctrl+shift+A:万能命令行shift两次:查看资源文件新建工程第一步操作module设置把空包分层去掉,compact empty middle package设置当前的工程是utf-8,设置的Editor–>File Encodings–>全部改成utf-8,撤销与反撤销:Ctrl + z,Ctrl + Shift + z缩进、不缩进:Tab、Shift + tab(函数提示出错。有时其实函数是没有错误的,只是格式不对。只要空格合适就行;函数与函数之间也要空两格)

2023-04-06 09:32:07 558

原创 superglue特征点匹配结果可视化自定义编写

检视特征点匹配最直观的是显示出图像上点匹配结果的连线。对于比较通用的sift算法等,opencv提供了工具函数cv.drawMatches来实现该结果。但是当使用特征点匹配算法superglue时,输出的匹配结果数据形式与该函数接口对应不上,不同通过这个来实现。分析发现superglue的输出数据比较有特点,所以直接编写了可视化保存代码,具体实现如下。因为用的灰度图,所以显示黑白的。

2023-04-04 14:48:16 953 1

原创 关于ros安装过程中遇到rosdep update问题,及后续autuoware安装重复

rosdep update连不上网失败问题老生常谈了,搜索了大量解决方式后这一条有效:原理就是将原地址跳转到能够访问的代理现在又遇到了一个疑问:下一步是装autoware,步骤指南里面也需要进行rosdep update,# Download 1.14.0wget https://raw.fastgit.org/Autoware-AI/autoware.ai/1.14.0/autoware.ai.repossed -i "s/github.com/hub.fastgit.org/" au

2021-10-08 17:31:29 269

2024 remote sensing 投稿模板

2024 remote sensing 投稿模板

2024-04-18

华为汽车激光雷达技术&未来趋势研究报告

华为汽车激光雷达技术&未来趋势研究报告

2024-03-27

传感器原理及应用 课件及资料

三个版本ppt,通用传感器入门

2024-03-27

西克nanoscan3激光雷达原始数据通信及解析方法

西克nanoscan3激光雷达原始数据通信及解析方法

2024-03-26

基于图像及视频的交通事故相关数据集连接汇总

搜集了市面上能检索到的车辆相关的交通事故相关的各类数据集,点进去链接可下载。 包括了第一人称和第三人称数据,还有火焰数据 可以用于目标检测,机器学习等算法的训练。

2023-05-05

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除