估计量的优良准则
-
前提:评价一个估计量的好坏,不能仅仅依据一次试验的结果,而必须由多次试验结果来衡量。
因为估计量是样本的函数,是随机变量。因此,由不同的观测结果,就会求得不同的参数估计值。所以一个好的估计,应在多次试验中体现出优良性。
-
常用的几条标准:
-
无偏性
-
有效性
-
相合性
-
(一)无偏性:
-
背景:估计量是随机变量,对于不同的样本值会得到不同的估计值。我们希望估计值在未知参数真值附近摆动,而它的期望值等于未知参数的真值。这就导致了无偏性这个标准。
-
定义:设 θ ^ ( X 1 , . . . , X n ) \hat \theta(X_1,...,X_n) θ^(X1,...,Xn)是未知参数 θ \theta θ的估计量,若 E ( θ ^ ) = θ E(\hat \theta)=\theta E(θ^)=θ,则称 θ ^ \hat \theta θ^为 θ \theta θ的无偏估计
-
实际意义:无偏性的实际意义是指没有系统性的偏差
e.g 用样本均值作为总体均值的估计时,虽无法说明一次估计所产生的偏差,但这种偏差随机地在0的周围波动,对同一统计问题大量重复使用不会产生系统偏差。
(二)有效性:
-
背景:一个参数往往有不止一个无偏估计,若 θ ^ 1 \hat \theta_1 θ^1和 θ ^ 2 \hat \theta_2 θ^2都是参数 θ \theta θ的无偏估计量,我们可以比较 E ( θ ^ 1 − θ ) 2 E(\hat \theta_1-\theta)^2 E(θ^1−θ)2和 E ( θ ^ 2 − θ ) 2 E(\hat \theta_2 - \theta)^2 E(θ^2−θ)2的大小来决定二者谁更优。由于
D ( θ ^ 1 ) = E ( θ ^ 1 − θ ) 2 D ( θ ^ 2 ) = E ( θ ^ 2 − θ ) 2 D(\hat \theta_1)=E(\hat \theta_1-\theta)^2 \\ D(\hat \theta_2)=E(\hat \theta_2-\theta)^2 D(θ^1)=E(θ^1−θ)2D(θ^2)=E(θ^2−θ)2
所以无偏估计以方差小者为好,这就引入了有效性这一概念。 -
定义:设 θ ^ 1 = θ ^ 1 ( X 1 , . . . , X n ) \hat \theta_1=\hat \theta_1(X_1,...,X_n) θ^1=θ^1(X1,...,Xn)和 θ ^ 2 = θ ^ 2 ( X 1 , . . . , X n ) \hat \theta_2=\hat \theta_2(X_1,...,X_n) θ^2=θ^2(X1,...,Xn)都是参数 θ \theta θ的无偏估计量,若有
D ( θ ^ 1 ) < D ( θ ^ 2 ) D(\hat \theta_1)<D(\hat \theta_2) D(θ^1)<D(θ^2)
则称 θ ^ 1 \hat \theta_1 θ^1较 θ ^ 2 \hat \theta_2 θ^2有效。 -
最小方差无偏估计:设 X 1 , . . . , X n X_1,...,X_n X1,...,Xn是取自总体X的一个样本, θ ^ ( X 1 , . . . , X 2 ) \hat \theta(X_1,...,X_2) θ^(X1,...,X2)是未知参数 θ \theta θ的一个估计量,若 θ ^ \hat \theta θ^满足:
(1) E ( θ ^ ) = θ E(\hat \theta)=\theta E(θ^)=θ,即 θ ^ \hat \theta θ^为 θ \theta θ的无偏估计;
(2) D ( θ ^ ) ≤ D ( θ ^ ∗ ) D(\hat \theta)\leq D(\hat \theta^*) D(θ^)≤D(θ^∗), θ ^ ∗ \hat \theta^* θ^∗是 θ \theta θ的任一无偏估计
则称 θ ^ \hat \theta θ^为 θ \theta θ的最小方差无偏估计(也称最佳无偏估计)。