场函数和位函数不是一个易于理解的概念,今天我想要重点学习一下这方面的知识。
要理解位函数,首先就要理解矢量场,即电场、磁场和电磁场。
问题一:如何描述一个矢量场?
以下内容是我的个人见解,可能有表述不严谨的地方,大家领会思想即可。
这是一个很基础的问题。我们都知道,任何一个矢量都可以进行分解,转化为若干个矢量的叠加。例如在一个三维空间中,任意一个矢量都可以转化为三个分量的叠加,即X,Y,Z分量;反之,我们也可以说已知X,Y,Z分量,我们就可以完全描述这个矢量场了。既然在直角坐标系中,用X,Y,Z分量这么容易描述,我们为什么还要采用别的方式描述呢?
我认为,这是由于电场与磁场矢量的特殊性决定的。我们都知道,大自然具有着很完美的对称性,所以,真空中的一个点电荷的场强呈现完美的球状发散分布,电场从电荷出发,沿径向分布。同时,实验也证明了,通电长直导线的磁场呈现着完美的环形分布,即沿切向分布。
综上,我们知道,最简单的电场天然就带有“径向分量”的因素,最简单的磁场天然就带有“切向分量”的因素。因此,用径向分量和切向分量来描述电磁场中的矢量,也就是顺理成章的了。
如何用径向分量和切向分量描述电磁场呢?我们有着现成的理论——亥姆霍兹定理。
根据亥姆霍兹定理,任意一个矢量场可以由它的散度、旋度和边界条件确定。我们重点来理解一下这个定理。
首先我们需要搞明白散度和旋度的物理意义。
散度描述的是矢量场在一个点附近的通量特性,是用于描述“切向分量”的物理量。
我们用一个点电荷来说明。首