题意:有 N 件物品和一个容量是 V 的背包。每件物品只能使用一次。第 i 件物品的体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。输出最大价值。
数据范围
0<N,V≤1000
0<vi,wi≤1000
输入样例
4 5
1 2
2 4
3 4
4 5
输出样例:
8
思路:其实先学了点dp再来看背包觉得背包和dp的思维一样的。
- 状态表示:f[i][j]表示前i个物品体积不超过j的方案中的价值max
- 状态计算:无非就是第i个物品到底选不选
不选i:f[i][j] = f[i - 1][j]
选i:f[i][j] = f[i - 1][j - v[i]] + w[i]
代码实现1: O(n^2)
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 1010;
int n, m;
int f[N][N], v[N], w[N];
int main()
{
cin >> n >> m;
for(int i = 1; i <= n; i ++ )
cin >> v[i] >> w[i];
for(int i = 1; i <= n; i ++ )
for(int j = 0; j <= m; j ++ ){
f[i][j] = f[i - 1][j]; //首先绝对是可以不选的
if(j >= v[i])//再如果选了v[i]后不会超过最大体积j就可以选择
f[i][j] = max(f[i][j], f[i - 1][j - v[i]] + w[i]);
}
int res = 0;
//最后再找出最大的权值
for(int i = 0; i <= m; i ++ )
res = max(res, f[n][i]);
cout << res << endl;
return 0;
}
当然这个代码还可以简化,只需要开一个一维数组就可以了。
代码实现:
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 1010;
int n, m;
//f[i]表示体积为i的价值max
int f[N], v[N], w[N];
int main()
{
cin >> n >> m;
for(int i = 1; i <= n; i ++ )
cin >> v[i] >> w[i];
//j从大到小就可以保证f[j - v[i]] = f[i - 1][j - v[i]] 而不是f[i][j - v[i]]
for(int i = 1; i <= n; i ++ )
for(int j = m; j >= v[i]; j -- )
f[j] = max(f[j], f[j - v[i]] + w[i]);
//因为f[i]都被初始化成了0,所有f[m]就直接是最终答案,不用再遍历了
cout << f[m] << endl;
return 0;
}