01背包问题

传送门

题意:有 N 件物品和一个容量是 V 的背包。每件物品只能使用一次。第 i 件物品的体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。输出最大价值。
数据范围
0<N,V≤1000
0<vi,wi≤1000
输入样例
4 5
1 2
2 4
3 4
4 5
输出样例:
8
思路:其实先学了点dp再来看背包觉得背包和dp的思维一样的。

  • 状态表示:f[i][j]表示前i个物品体积不超过j的方案中的价值max
  • 状态计算:无非就是第i个物品到底选不选
    不选i:f[i][j] = f[i - 1][j]
    选i:f[i][j] = f[i - 1][j - v[i]] + w[i]

代码实现1: O(n^2)

#include<iostream>
#include<cstring>
#include<algorithm>

using namespace std;

const int N = 1010;

int n, m;
int f[N][N], v[N], w[N];

int main()
{
    cin >> n >> m;
    for(int i = 1; i <= n; i ++ )
        cin >> v[i] >> w[i];
        
    for(int i = 1; i <= n; i ++ )
        for(int j = 0; j <= m; j ++ ){
            f[i][j] = f[i - 1][j]; //首先绝对是可以不选的
            if(j >= v[i])//再如果选了v[i]后不会超过最大体积j就可以选择
                f[i][j] = max(f[i][j], f[i - 1][j - v[i]] + w[i]);
        }
        
    int res = 0;
    //最后再找出最大的权值
    for(int i = 0; i <= m; i ++ )
        res = max(res, f[n][i]);
        
    cout << res << endl;
    return 0;
}

当然这个代码还可以简化,只需要开一个一维数组就可以了。
代码实现:

#include<iostream>
#include<cstring>
#include<algorithm>

using namespace std;

const int N = 1010;

int n, m;
//f[i]表示体积为i的价值max
int f[N], v[N], w[N];

int main()
{
    cin >> n >> m;
    for(int i = 1; i <= n; i ++ )
        cin >> v[i] >> w[i];
        
    //j从大到小就可以保证f[j - v[i]] = f[i - 1][j - v[i]] 而不是f[i][j - v[i]] 
    for(int i = 1; i <= n; i ++ )
        for(int j = m; j >= v[i]; j -- )
                f[j] = max(f[j], f[j - v[i]] + w[i]);
                
    //因为f[i]都被初始化成了0,所有f[m]就直接是最终答案,不用再遍历了
    cout << f[m] << endl;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值