1. Introduction to Knowledge Technology

1.1 use of computation

Computers and algorithms were originally developed to solve what might be called concrete tasks.such as :

  • compute a missile trajectory.
  • crack a code( decryption)

In common: the task is well-defined, we can assess whether the solution is correct.

In these tasks, the data is transformed in a mechanical way or leads to a mechanical action, but only in a very limited way do they enhance our (that is, human) knowledge.

Hence - not “Knowledge Technologies”.

1.2 knowledge tasks

Data: measurements (bit patterns for computers)
Information: processed data; patterns that are satisfied for given data.
Knowledge: information interpreted with respect to a user’s context to extend human’s understanding in a given area.

concrete task: well-defined, mechanically processing data to an unambiguous solution.
Knowledge task: data is unreliable or outcome is ill-defined (usually both); computer mediate between user and data, where context for the user is critical. Enhance human’s understanding.

structured data: conforms to a schema (e.g. database).
unstructured data: data without regular decomposable structure (e.g. plaintext).
semi-structured data: data which corresponds in part to a schema, but irregular or rapidly changing.

consider tasks where the data is irregular or unreliable, or the outcome is not well-defined:

  • Translation between languages.
  • Finding an “optimal” route between two locations.(optimal ? distance, time, fuel?)
  • Deciding what movie to watch.

This is not a computational task - but we do use computer to mediate between us and data, in helping to reach a decision.

Context is critical: the origin of the data, the consumer of the output.
These use, produce, or enhance human knowledge.

data = raw information
knowledge = patterns or models behind the data

1.3 methods for data analysis

1.3.1 supervised learning

  • classification: predicting a discrete class
  • regression: predicting a numeric quantity

1.3.2 unsupervised learning

  • association: detecting associations between features
  • information organisation; clustering: grouping similar instances into clusters
  • reinforcement learning
  • recommender systems
  • anomaly/outlier detection
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值