吴恩达机器学习笔记week12——支持向量机 Support vector machine

12-1.优化目标 Optimization objective

支持向量机的代价函数 VS 逻辑回归的代价函数
在这里插入图片描述

SVM的优化目标/代价函数:在这里插入图片描述
支持向量机直接计算出结果,而不是概率
SVM会让A趋于0
在这里插入图片描述

12-2.直观上对大间隔的理解 Large Margin Intuition

SVM==大间距分类器 large margin classifiers
在这里插入图片描述
当y=1,根据cost1,theta.transposex>=1时,cost1越小
当y=0,根据cost0,theta.transpose
x<=-1时,cost0越小
C一般来说,很大
在这里插入图片描述
大的margin,使得SVM具有好的鲁棒性robustness
在这里插入图片描述

12-3.大间隔分类器的数学原理 The mathematics behind large margin classification

  • vector inner product向量内积
    在这里插入图片描述
    假设偏置theta0==0,且只有两个特征
    在这里插入图片描述
    在这里插入图片描述
    theta向量和决策边界垂直
    最小化代价函数,就要使theta的模最小,则P尽可能大,形成大间隔分类

12-4.核函数1 Kernels——SVM在复杂非线性分类器的应用

作用:使用核函数在SVM中定义新的特征变量
核函数即相似度函数:衡量两者间的相似程度
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

12-5.核函数2 Kernels

  • 如何得到标记点landmarks
    ![在这里插入图片描述](https://img-blog.csdnimg.cn/20201028114356564.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L1NhdWx0eQ==,size_1 6,color_FFFFFF,t_70#pic_center)
    在这里插入图片描述
    核函数也可以用于其他机器学习的算法,不过会很慢
  • 如何选择SVM参数
    在这里插入图片描述

12-6.使用SVM Using an SVM

在这里插入图片描述
在这里插入图片描述
核函数的选择:需要满足,满足默塞尔定理
线性核函数:不用核函数
高斯核函数
多项式核函数:两个参数
字符串核函数
卡方核函数
直方相交核函数
在这里插入图片描述
多分类问题
在这里插入图片描述
选择哪一个算法不是关键,逻辑回归,神经网络,SVM
关键在于有多少数据,是否对算法熟练,是否擅长做误差分析error analysis 和排除学习 debugging learning,如何设定新的特征变量

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值