吴恩达机器学习笔记week12——支持向量机 Support vector machine
12-1.优化目标 Optimization objective
支持向量机的代价函数 VS 逻辑回归的代价函数
SVM的优化目标/代价函数:
支持向量机直接计算出结果,而不是概率
SVM会让A趋于0
12-2.直观上对大间隔的理解 Large Margin Intuition
SVM==大间距分类器 large margin classifiers
当y=1,根据cost1,theta.transposex>=1时,cost1越小
当y=0,根据cost0,theta.transposex<=-1时,cost0越小
C一般来说,很大
大的margin,使得SVM具有好的鲁棒性robustness
12-3.大间隔分类器的数学原理 The mathematics behind large margin classification
- vector inner product向量内积
假设偏置theta0==0,且只有两个特征
theta向量和决策边界垂直
最小化代价函数,就要使theta的模最小,则P尽可能大,形成大间隔分类
12-4.核函数1 Kernels——SVM在复杂非线性分类器的应用
作用:使用核函数在SVM中定义新的特征变量
核函数即相似度函数:衡量两者间的相似程度
12-5.核函数2 Kernels
- 如何得到标记点landmarks
![在这里插入图片描述](https://img-blog.csdnimg.cn/20201028114356564.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L1NhdWx0eQ==,size_1 6,color_FFFFFF,t_70#pic_center)
核函数也可以用于其他机器学习的算法,不过会很慢 - 如何选择SVM参数
12-6.使用SVM Using an SVM
核函数的选择:需要满足,满足默塞尔定理
线性核函数:不用核函数
高斯核函数
多项式核函数:两个参数
字符串核函数
卡方核函数
直方相交核函数
多分类问题
选择哪一个算法不是关键,逻辑回归,神经网络,SVM
关键在于有多少数据,是否对算法熟练,是否擅长做误差分析error analysis 和排除学习 debugging learning,如何设定新的特征变量