Chapter 1 Basic knowledge of computers
Number system
Decimal number十进制:
0-9;逢十进一
Binary number二进制:
0,1; 逢二进一
Octal number八进制:
0-7; 逢八进一
Hexadecimal Number 十六进制:
0-9,A-F; 逢十六进一
进制表示法:
对数字进行标号Xn, 表示为十进制数:
进制转换:
短除法转二进制;二进制转其他进制
Number Representation in Microcomputer
无符号数Unsigned Numbers
只有数字位(numeric bits)
符号数Signed Number
首位为符号位Signed bit(0+,1-)剩余为数字位Numeric bit
机器码用二进制表示
真值表示机器码
原始二进数据Original Binary Data(原码)
用符号数表示
范围:8位二进制数:-127~+127
注意:原始二进制码的0并不唯一(+0,-0)
优点:真值表与原始数据相似,使用方便
缺点:在二进制运算时复杂,且0不唯一
补码Radix Complement
正数的补码就是其本身
负数的补码是在其原码的基础上, 符号位不变, 其余各位取反, 最后+1. (即在反码的基础上+1)
范围:8位二进制数:-128~+127
反码Radix-1 Complement
正数的反码是其本身
负数的反码是在其原码的基础上, 符号位不变,其余各个位取反
范围:8位二进制数:-127~+127
特殊机器数10000000
无符号数:(10000000)B = 128
原码(10000000)B = -0
补码(10000000)B = -127
反码(10000000)B = -128
二进制数计算:
溢出Overflow:
- 直接看是否超出位数
- 判断:进位数字位A移到原符号位位置,符号位B移到更高一位;如果A=B则未溢出,反之则溢出。
符号数的扩展Signed number extension:
用符号位补全高位
Decimal number and string encoding
BCD码 BCD Code
Compressed BCD Code 压缩BCD
四位二进制码表示一位十进制数
Uncompressed BCD Code 未压缩BCD
八位二进制数表示一位十进制数
(低四位使用压缩BCD,高四位无定形)
BCD码转换
先转为十进制,再转为二进制
BCD码运算
不可以使用进位符,故在进位时加6(跳过非法码)
字符编码Characters Coding (ASC II)
8位二进制数
最高位是校验位(check bit)或直接置0
7位二进制数表示共128个字符