微机原理与接口技术抢救手册#1

文章介绍了计算机中基本的数字系统,包括十进制、二进制、八进制和十六进制,以及它们之间的转换方法。此外,还详细阐述了无符号数和符号数的概念,特别是二进制下的原码、反码和补码表示,以及它们在表示范围和运算中的特点。同时提到了溢出情况和BCD码在十进制编码中的应用,以及ASCII字符编码标准。
摘要由CSDN通过智能技术生成

Chapter 1 Basic knowledge of computers

Number system

Decimal number十进制:

0-9;逢十进一

Binary number二进制:

0,1; 逢二进一

 

Octal number八进制:

0-7; 逢八进一

Hexadecimal Number 十六进制:

0-9,A-F; 逢十六进一

进制表示法:

对数字进行标号Xn, 表示为十进制数:

 

进制转换:

短除法转二进制;二进制转其他进制

Number Representation in Microcomputer

无符号数Unsigned Numbers

只有数字位(numeric bits)

符号数Signed Number

首位为符号位Signed bit(0+,1-)剩余为数字位Numeric bit

机器码用二进制表示

真值表示机器码

原始二进数据Original Binary Data(原码)

用符号数表示

范围:8位二进制数:-127~+127

注意:原始二进制码的0并不唯一(+0,-0)

优点:真值表与原始数据相似,使用方便

缺点:在二进制运算时复杂,且0不唯一

补码Radix Complement

正数的补码就是其本身

负数的补码是在其原码的基础上, 符号位不变, 其余各位取反, 最后+1. (即在反码的基础上+1)

范围:8位二进制数:-128~+127

反码Radix-1 Complement

正数的反码是其本身

负数的反码是在其原码的基础上, 符号位不变,其余各个位取反

范围:8位二进制数:-127~+127

 特殊机器数10000000

无符号数:(10000000)B = 128

原码(10000000)B = -0

补码(10000000)B = -127

反码(10000000)B = -128

 

二进制数计算:

溢出Overflow:

  1. 直接看是否超出位数
  2. 判断:进位数字位A移到原符号位位置,符号位B移到更高一位;如果A=B则未溢出,反之则溢出。

符号数的扩展Signed number extension:

用符号位补全高位

Decimal number and string encoding

BCD码 BCD Code

Compressed BCD Code 压缩BCD

四位二进制码表示一位十进制数

 

Uncompressed BCD Code 未压缩BCD

八位二进制数表示一位十进制数

(低四位使用压缩BCD,高四位无定形)

BCD码转换

先转为十进制,再转为二进制

 

BCD码运算

不可以使用进位符,故在进位时加6(跳过非法码)

字符编码Characters Coding (ASC II)

8位二进制数

最高位是校验位(check bit)或直接置0

7位二进制数表示共128个字符

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

江弋南

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值