1135. 最低成本联通所有城市(最小生成树)

想象一下你是个城市基建规划者,地图上有 N 座城市,它们按以 1 到 N 的次序编号。

给你一些可连接的选项 conections,其中每个选项 conections[i] = [city1, city2, cost] 表示将城市 city1 和城市 city2 连接所要的成本。(连接是双向的,也就是说城市 city1 和城市 city2 相连也同样意味着城市 city2 和城市 city1 相连)。

返回使得每对城市间都存在将它们连接在一起的连通路径(可能长度为 1 的)最小成本。该最小成本应该是所用全部连接代价的综合。如果根据已知条件无法完成该项任务,则请你返回 -1。

示例 1:

输入:N = 3, conections = [[1,2,5],[1,3,6],[2,3,1]]
输出:6
解释:
选出任意 2 条边都可以连接所有城市,我们从中选取成本最小的 2 条。

示例 2:

输入:N = 4, conections = [[1,2,3],[3,4,4]]
输出:-1
解释: 
即使连通所有的边,也无法连接所有城市。

提示:

  1. 1 <= N <= 10000
  2. 1 <= conections.length <= 10000
  3. 1 <= conections[i][0], conections[i][1] <= N
  4. 0 <= conections[i][2] <= 10^5
  5. conections[i][0] != conections[i][1]

思路:题目考查的是最小生成树的权,如果不能形成最小生成树的话,那么返回-1。

方法1:Kruskal算法

1、先了解一下Kruskal算法的步骤:

(1)设一个有n个顶点的连通网络为G(V,E),将所有的边按照权值从小到大排序。

(2)当在G中选择一条具有最小权值的边时,若该边的两个顶点落在不同的连通分量上,则将此边加入到T中;否则,即这条边的两个顶点落在同一个连通分量上,会形成环,则将此边舍去,重新选择下一条权值最小的边;

(3)如此重复下去,直到所有顶点在同一个连通分量上为止。

T就是最小生成树。如果最后T中,不能包含所有顶点,那么就没有办法构成最小生成树。

2、设计算法所用到的数据结构:

采用一个二维数组来存集合T。

如何判断两个顶点是否落在同一个联通分量上:采用并查集来解决。关于并查集的知识,请参考684. 冗余连接

3、代码实现:

class Solution {
public:
    static bool cmp(vector<int> a, vector<int> b){
        return a[2]<b[2];
    }
    
    int find_father(vector<int>&f, int i){
        while(i!=f[i]){
            i=f[i];
        }
        return i;
    }
    
    int minimumCost(int N, vector<vector<int>>& connections) {
        int re=0;
        //T存目标最小生成树,就这个题目本身而言,T不是必须的,就拿一个变量记录找到边的个数就可以了
        vector<vector<int>>T;
        //将所有的边按照权值从小到大排序
        sort(connections.begin(), connections.end(), cmp);
        vector<int>f(N+1);
        for(int i=1; i<=N; ++i){
            f[i]=i;
        }   
        for(int i=0; i<connections.size(); ++i){
            int p=find_father(f, connections[i][0]);
            int q=find_father(f, connections[i][1]);
            if(p!=q){
                T.push_back(connections[i]);
                f[p]=q;
                re+=connections[i][2];
            }
            //找到了N-1条边,也就是说N个顶点都找全了
            if(T.size()==N-1) return re;
        }
        return -1;
    }
};

方法2:Prim算法了解原理即可,原理如下:

(1)设一个有n个顶点的连通网络为G(V,E), T(U, TE)是最小生成树。V中存G的顶点,E中存G的边。U中存T的顶点,TE中存T的边。开始时,V中是全部顶点。U和TE都是空的。

(2)第一次先从V中随便取一个顶点加入到U中。

(3)然后从那些其一个端点已经在U中,另一个端点在U外的所有边中找一条最短的边。并把该边和顶点分别并入TE和U中。如此进行下去,每次往生成树里并入一个顶点和一条边,直到n-1次之后,把所有n个顶点都并入U中,此时U=V,T是最小生成树。

如果最后T中,不能包含所有顶点,那么就没有办法构成最小生成树。

class Solution {
public:
    int minimumCost(int N, vector<vector<int>>& connections) {
        int re = 0;
        unordered_set<int>U{1}, V;//开始将顶点1放入U中
        for(int i=2; i<=N; ++i){
            V.insert(i);
        }
        unordered_map<int, unordered_map<int, int> >m;//存每一条边和权值,方便查找
        for(auto x:connections){//初始化m
            m[x[0]][x[1]]=x[2];
            m[x[1]][x[0]]=x[2];
        }
        for (int cnt = 1; cnt <= N; cnt++){//cnt表示已经找到的顶点数目
            int smallest = INT_MAX;
            vector<int>target(3);
            for (auto it1=U.begin(); it1!=U.end(); ++it1){
                for(auto it2=V.begin(); it2!=V.end(); ++it2){
                    if(m[*it1].count(*it2) && m[*it1][*it2]<smallest){
                        target = {*it1, *it2, m[*it1][*it2]};
                        smallest = m[*it1][*it2];
                    }
                }
            }
            if (smallest != INT_MAX){
                re += target[2];
                U.insert(target[1]);
                V.erase(target[1]);
            }
            else break;
        }
        return U.size() == N ? re : -1;
    }
};

  • 0
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
成本最低问题,也称为最小生成树(Minimum Spanning Tree, MST)问题,是一个经典的图论问题,目标是找到一个图中所有顶点之间的边,使得这些边连接成一棵树,并且这棵树的总权重(边的长度或成本)最小。这个问题在计算机科学中有广泛应用,比如网络设计、电路布局等。 在算法上,最著名的解决方法之一是Prim算法和Kruskal算法。Prim算法是从一个起始顶点开始,逐步添加与已选取顶点相连的最短边,直到覆盖所有顶点。而Kruskal算法则是按照边的权重从小到大排序,每次选择当前未加入树中的边中权重最小的一条,直到形成树且不再有连通的边。 下面是使用Python实现的Kruskal算法的示例代码: ```python import heapq class Graph: def __init__(self, vertices): self.V = vertices self.graph = [] # 添加边,表示为(u, v, w) def add_edge(self, u, v, w): self.graph.append([u, v, w]) # Kruskal's algorithm def kruskal_mst(self): result = [] # 最小生成树 i, e = 0, 0 # 初始化计数器 self.graph = sorted(self.graph, key=lambda item: item) # 按权重排序 while e < self.V - 1: u, v, w = heapq.heappop(self.graph) # 弹出最小的边 if u not in result and v not in result: # 避免形成环 e += 1 result.append([u, v, w]) i += 1 print(f"Adding edge {i} with weight {w} ({u}, {v})") return result # 使用示例 g = Graph(4) g.add_edge(0, 1, 10) g.add_edge(0, 2, 6) g.add_edge(0, 3, 5) g.add_edge(1, 3, 15) g.add_edge(2, 3, 4) mst = g.kruskal_mst() print("Edges of the minimum spanning tree:") for u, v, w in mst: print(f"{u} - {v} with weight {w}") ``` 这个代码首先定义了一个简单的图类,包含了添加边的方法以及Kruskal算法的实现。然后创建一个图实例并添加一些边,最后调用`kruskal_mst`方法得到最小生成树的边及其权重。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值