二元函数可微与偏导数_在家学|全微分的定义,可微与极限存在、连续性的关系及方向导数...

本文详细探讨了二元函数的可微性,包括全微分的定义、可微的必要条件和充分条件。介绍了在某点连续、偏导数存在的关系,并阐述了一阶全微分形式的不变性。同时,讲解了方向导数的概念,通过方向余弦来表达。最后,总结了二元函数的连续性、可微性与偏导数存在的相互关系。
摘要由CSDN通过智能技术生成

1.全微分的定义

设函数在点的某邻域内有定义.若函数在点处的全增量可表示为 其中是仅与点有关,而与无关的常数,.则称函数在点处可微分;并称线性函数为函数在点处的全微分,记作 ,即 对于二元函数,规定自变量的增量为自变量的微分:于是

2.可微的必要条件

若函数 在点可微,则

(a)函数在点处连续;

(b)函数在点处的偏导数都存在,且有

3.可微的充分条件

(a)若函数在点的某邻域内偏导数都存在,且、在点处连续,则函数在点处可微.

(b)若在点处的两个偏导数都存在,在点处满足

则在处可微,且

可微的充分条件可以弱化为:两个偏导数之一连续,函数就可微.

4.一阶全微分形式的不变性

若 可微, 也可微,则函数 与复合函数 的微分相等.即不论作为的自变量; 还是作为复合函数的中间变量,均有 这一性质称为「一阶全微分形式的不变性」.利用一阶全微分形式不变性,可以证明不论 是自变量还是中间变量,下列全微分的四则运算法则都成立:

设可微分,则亦可微分,且有

  1. ;
  2. ;
我们常常是在不知不觉中就用到了一阶全微分形式不变性.

5.方向导数

如果函数 在点 可微分那么函数在该点沿任一方向 的方向导数都存在,且有

其中是方向的方向余弦.

对于三元函数 来说,它在空间一点 沿 的方向导数为 如果函数 在点 可微分,则函数在该点沿着方向 的方向导数为

其中是方向的方向余弦.

6.二元函数连续、可微、偏导数存在的一般性的关系

b63389708ac87451553442cd198672b1.png

资料来源:北洋数学研究社·学研部

a177398ae80472f92403b748b62764e6.png

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值