VDSR论文笔记

VDSR论文笔记

VDSR将VGG网络模型用于图像超分辨率(Super Resolution, SR)问题中,大幅提高了网络深度,使得特征提取更加充分,同时在训练的过程中利用残差学习,大幅调高了学习率,使得训练时间明显缩短。

网络结构

与SRCNN相同,VDSR首先将输入LR图像放大至目标分辨率,再使用VGG网络在高分辨率条件下提取特征,最终重建得到高分辨率图像。

损失函数

使用MSE损失函数,但由于是残差学习,所以损失函数的形式稍有变化。

测试结果

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值