基于EM-GMM模型的人员异常行为检测 MATLAB 仿真

107 篇文章 28 订阅 ¥59.90 ¥99.00
本文详述了如何使用MATLAB基于EM-GMM模型进行人员异常行为检测,涉及行为特征提取、模型训练、异常分数计算及可视化,适用于视频监控和安防领域。
摘要由CSDN通过智能技术生成

基于EM-GMM模型的人员异常行为检测 MATLAB 仿真

人员异常行为检测是一项重要的研究课题,在视频监控、安防领域具有广泛的应用。本文将介绍如何使用 MATLAB 实现基于EM-GMM(Expectation-Maximization Gaussian Mixture Model)模型的人员异常行为检测,并提供相应的源代码。

  1. 异常行为检测原理简介
    人员异常行为检测旨在通过对行为轨迹的分析,识别出与正常行为模式不符的异常行为。其中,GMM 是一种常用的概率模型,用于对行为分布进行建模。EM-GMM 则是一种基于EM算法的GMM训练方法,可以有效地估计行为模型的参数。

  2. MATLAB 代码实现
    下面是基于EM-GMM模型的人员异常行为检测的 MATLAB 代码实现:

% 步骤 1: 导入视频数据
video = VideoReader('input_video.mp4')
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值