实验目的
- 用 DFT处理时间抽样信号,并根据实序列离散傅里叶变换的对称性,初步判定程序的正确性。
实验原理
对称特性一
- 实序列x(n)的离散傅里叶变换X(k)为复数,其实部 为偶函数,虚部为奇函数。
对称特性二
- 实序列 x(n)的离散傅里叶变换X(k),在 0≤n≤N−1 区间内,对于 N/2 点呈对称分布。是偶对称,是奇对称。注意:认为.
实验方法与内容
题目
对矩形序列进行离散傅里叶变换,其中N=4000,同时,验证DFT的对称性。
matlab运行代码:
N = 10; % 序列采样长度
xn = [ones(1, 5), zeros(1, N-5)]; % 矩形序列 R5(n)
% 矩阵求解DFT
n = 0:N-1;
k = n; % 由于n和k相同,可以简化
WN = exp(-1i * 2 * pi / N); % 使用1i代表虚数单位
WNnk = WN .^ (n' * k); % DFT矩阵
Xk = xn * WNnk; % 求出DFT
% 实部与虚部的对称性
subplot(2, 2, 1);
stem(n, real(Xk), 'filled');
grid on;
title('实部');
xlabel('n');
ylabel('Real(Xk)');
axis([0, N, -1, 6]);
subplot(2, 2, 2);
stem(n, imag(Xk), 'filled');
grid on;
title('虚部');
xlabel('n');
ylabel('Imag(Xk)');
axis([0, N, -4, 4]);
% 模与辐角的对称性
subplot(2, 2, 3);
stem(n, abs(Xk), 'filled');
grid on;
title('模');
xlabel('n');
ylabel('Abs(Xk)');
axis([0, N, -1, 6]);
subplot(2, 2, 4);
stem(n, angle(Xk), 'filled');
grid on;
title('相角');
xlabel('n');
ylabel('Angle(Xk)');
axis([0, N, -pi, pi]);
运行结果:
结果分析
由输出图像可明显看出,对实序列x(n)进行DFT后的序列 X(k) ,其实部 为偶函数,虚部 为奇函数, 是偶对称,是奇对称,符合对称性。