信号处理实验——实序列DFT对称性的验证

实验目的

  • 用 DFT处理时间抽样信号,并根据实序列离散傅里叶变换的对称性,初步判定程序的正确性。

实验原理

对称特性一
  • 实序列x(n)的离散傅里叶变换X(k)为复数,其实部 X_{r}k 为偶函数,虚部X_{i}k为奇函数。
对称特性二
  • 实序列 x(n)的离散傅里叶变换X(k),在 0≤n≤N−1 区间内,对于 N/2 点呈对称分布。$\mid X(k)\mid$是偶对称,$arg[X(k)]$是奇对称。注意:认为$X(N)=X(0)$.

实验方法与内容

题目

对矩形序列R_{5}(n)进行离散傅里叶变换,其中N=4000,同时,验证DFT的对称性。

matlab运行代码:

N = 10; % 序列采样长度
xn = [ones(1, 5), zeros(1, N-5)]; % 矩形序列 R5(n)

% 矩阵求解DFT
n = 0:N-1;
k = n; % 由于n和k相同,可以简化
WN = exp(-1i * 2 * pi / N); % 使用1i代表虚数单位
WNnk = WN .^ (n' * k); % DFT矩阵

Xk = xn * WNnk; % 求出DFT

% 实部与虚部的对称性
subplot(2, 2, 1);
stem(n, real(Xk), 'filled');
grid on;
title('实部');
xlabel('n');
ylabel('Real(Xk)');
axis([0, N, -1, 6]);

subplot(2, 2, 2);
stem(n, imag(Xk), 'filled');
grid on;
title('虚部');
xlabel('n');
ylabel('Imag(Xk)');
axis([0, N, -4, 4]);

% 模与辐角的对称性
subplot(2, 2, 3);
stem(n, abs(Xk), 'filled');
grid on;
title('模');
xlabel('n');
ylabel('Abs(Xk)');
axis([0, N, -1, 6]);

subplot(2, 2, 4);
stem(n, angle(Xk), 'filled');
grid on;
title('相角');
xlabel('n');
ylabel('Angle(Xk)');
axis([0, N, -pi, pi]);

运行结果:

 

结果分析

由输出图像可明显看出,对实序列x(n)进行DFT后的序列 X(k) ,其实部 X_{r}k为偶函数,虚部 X_{i}k为奇函数,$\mid X(k)\mid$ 是偶对称,$arg[X(k)]$是奇对称,符合对称性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值