禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者!

介绍
在代谢组学研究中,数据完整性至关重要,但缺失值的问题却时常出现,这给数据分析带来了挑战。面对这种情况,选择一种既能有效补齐缺失值又能保持数据质量的插补方法显得尤为重要。为了解决这一问题,我们对八种常见的数据插补方法进行了全面的比较和评估。
这项评估的目的是确定每种方法在处理不同缺失比例的代谢组数据时,其插补值与真实值之间的差异程度。我们通过模拟不同比例的缺失数据,并应用如下八种插补方法:
- 均值插补(Mean Imputation)
- 中位数插补(Median Imputation)
- 随机森林(Random Forest Imputation)
- k近邻(k-Nearest Neighbors Imputation)
- 奇异值分解(Singular Value Decomposition Imputation)
- 分位数回归(Quantile Regression Imputation)
- 半最小值插补(Half of Minimum Value Imputation)
- 零值插补(Zero Imputation)
加载R包
library(tidyverse)
library
订阅专栏 解锁全文
5947

被折叠的 条评论
为什么被折叠?



