代谢组数据分析(十六):代谢组数据的缺失值处理方法评估汇总

禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者!

在这里插入图片描述

介绍

在代谢组学研究中,数据完整性至关重要,但缺失值的问题却时常出现,这给数据分析带来了挑战。面对这种情况,选择一种既能有效补齐缺失值又能保持数据质量的插补方法显得尤为重要。为了解决这一问题,我们对八种常见的数据插补方法进行了全面的比较和评估。

这项评估的目的是确定每种方法在处理不同缺失比例的代谢组数据时,其插补值与真实值之间的差异程度。我们通过模拟不同比例的缺失数据,并应用如下八种插补方法:

  1. 均值插补(Mean Imputation)
  2. 中位数插补(Median Imputation)
  3. 随机森林(Random Forest Imputation)
  4. k近邻(k-Nearest Neighbors Imputation)
  5. 奇异值分解(Singular Value Decomposition Imputation)
  6. 分位数回归(Quantile Regression Imputation)
  7. 半最小值插补(Half of Minimum Value Imputation)
  8. 零值插补(Zero Imputation)

加载R包

library(tidyverse)
library
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

生信学习者1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值