目录
一、引言
图像的分辨率(Image Super-Resolution,SR)通常是指图像记录细节的能力,图像的分辨率越高,图像存储的细节就越多,人眼可见的清晰度就越高,与之相反,低分辨率图像通常缺乏清晰度和细节,这可能是图像采集设备的限制、传输中的压缩或其他因素导致的。为了更加便捷、低成本地改善视觉体验和更准确地分析图像内容,图像超分辨率重建技术得以应用。
图像的超分辨率重建是一种将输入的低分辨率图像经过特定算法转化为高分辨率图像的技术。通俗的说,图像超分辨率重建就像是为蒙着一层淡淡马赛克的图片褪去马赛克层,使图片更加清晰可见。具体效果如下:
图像超分辨率重建技术是当前计算机视觉和图像处理领域中的一个热门研究课题,因此有不少方法可以达到较好的重建效果,常见的方法有插值法、频域时域法、边缘先验法和学习法等。本文主要介绍的是基于深度学习的SRResNet算法。
二、SRResNet算法原理
SRResNet是一种用于图像超分辨率任务的深度学习模型。SRResNet的核心概念是通过残差连接(Residual Connection)和卷积神经网络(Convolutional Neural Networks,CNN)来实现图像超分辨率。当我们对图像进行超分辨率重建时,我们一般有两个目标:一是增强图像质量使图像的细节更加清晰,二是放大图像尺寸以增加图像的像素数量。对于前者,SRResNet使用了基于残差学习的深层网络结构来完成低分辨率到高分辨率的映射,对于后者则使用了子像素卷积来将低分辨率特征图上采样到高分辨率。本文将从以上两个方面介绍SRResNet算法原理。
1. 深度残差网络
为了提高神经网络模型的准确性,我们常常会堆叠更多的层来帮助模型更好的学习特征表示,然而层数的增加也带来了不少问题,如梯度消失/爆炸、过拟合、计算资源消耗量大等。虽然梯度消失问题可以通过归一化初始化和中间归一化层得到有效的解决,但随着网络层数的增加,模型的准确率并不会一直增加。相反,当准确率达到饱和时,再增加网络层数,准确率反而会下降。如图2所示,网络层数更高的网络反而具有更高的训练损失和测试损失。 然而,残差学习不仅有效的解决了梯度消失/爆炸的问题,还大