串
1、串的定义
子串:Fisch
主串:Fisch.com
index(S,T,pos)
12345678
345
pos则为3
2、BF算法
首先S[1]和T[1]比较,若相等,则再比较S[2]和T[2],一直到T[M]为止;若S[1]和T[1]不等,则比较S[2]和T[1],再依次进行比较。如果存在k,1≤k≤N,且S[k+1…k+M]=T[1…M],则匹配成功;否则失败。该算法最坏情况下要进行M*(N-M+1)次比较,时间复杂度为O(M*N)。
// 返回子串T在主串S中第pos个字符之后的位置
// 若不存在,则返回0
// T非空,1 <= pos <= strlen(S)
// 注意:我们这里为了表述方便,字符串使用了第一个元素表示长度的方式。
int index( String S, String T, int pos )
{
int i = pos; // i用于主串S中当前位置下标
int j = 1; // j用于子串T中当前位置下标
while( i <= S[0] && j <= T[0] ) // i或j其中一个到达尾部即终止搜索!
{
if( S[i] == T[i] ) // 若相等则继续下一个元素匹配
{
i++;
j++;
}
else // 若失配则j回溯到第一个元素从新匹配;
{
i = i-j+2; // i回溯到***上次匹配首位的下一个元素***,这是效率低下的关键!
//1231212345678; 12345; 当i=3,j=3时; 让i=3-3+2=2,j=1;
j = 1;
}
}
if( j > T[0] )
{
return i - T[0];
}
else
{
return 0;
}
}
3 KMP算法
一、思想: 主串指针不回溯,模式串向后滑动至某个位置上。
二、对模式串进行next数组定位的三种情况:
1、第一个字符不相等,令next = 0;
2、没有前缀和后缀相等的情况
3、存在前缀和后缀相等
三、求next函数值
i为后缀,j为前缀
a b a b e b
0 1 1 2 3 1
①i = 1,j = 0;i++ j++;next1 = 0;初始条件
②i = 2,j = 1;next2 = 1;第一次循环else
③T2 != T1;j = next1 = 0;第二次循环
④i++ j++;i = 3,j = 1;next3 = 1;第三次循环else
⑤T3 == T1;i = 4, j = 2;next4 = 2
⑥T4 == T2; i ++, j++ ;i = 5,j = 3;next[5] = k = 3;
⑦T5 != T3;j = next3 = 1;
⑧T5 != T1;j = next1 = 0;
#include <stdio.h>
typedef char* String;
void get_next( String T, int *next)
{
int i = 1;//i为后缀
int j = 0;//j为前缀
next[1] = 0;
while (i < T[0] )
{
if( 0 == j || T[i] == T[j])//j = 0为了避免有next[0]出现;
{
i++;
j++;
next[i] = j;//相等的话就可以检查前缀后面的位置
}
else
{
j = next [j]; //为了让j回溯到前缀位置,i不动。
}
}//前缀是固定的,后缀是相对的。
}
//返回子串T在主串S第pos个字符之后的位置;
//若不存在,则返回0
int Index_KMP( String S, String T, int pos)
{
int i = pos;
int j = 1;
int next[255];
get_next( T, next );
while( i< S[0] || i < T[0])
{
if( S[i]== T[j])
{
i++;
j++;
}
else
{
j = next[j];
}
}
if( j > T[0])
{
return i - T[0];
}
else
{
return 0;
}
}
int main()
{
char str[255] = "ababaaaba";
int next[255];
int i = 1;
str[0] = 9;
get_next(str, next);
for( i = 1; i < 10; i++)
{
printf(" %d", next[i]);
}
return 0;
}