Curvilinear Coordinates Vehicle Model【Autonomous Vehicle Planning and Control】

Characteristic

Curvilinear coordination model is an efficient model to consider both longitudinal and lateral motion.
Using Bahnkoordinaten.
Nonlinear Model.

Variables

State Variables:

x = [ s n μ v a δ δ ˙ ] \mathbf{x} = \begin{bmatrix} s \\ n \\ \mu \\ v \\ a \\ \delta \\ \dot{\delta} \end{bmatrix} x= snμvaδδ˙

  • ( s ): Progress
  • ( n ): Lateral error
  • ( μ \mu μ): Local heading
  • ( v ): Velocity
  • ( a ): Acceleration in projected driving direction
  • ( δ \delta δ): Steering angle
  • ( δ ˙ \dot{\delta} δ˙ ): Steering rate

Input variable:

u = [ u Jerk u δ ¨ ] = [ v ¨ δ ¨ ] \begin{align*} \mathbf{u} = \begin{bmatrix} u_{\text{Jerk}} \\ u_{\ddot{\delta}} \end{bmatrix} = \begin{bmatrix} \ddot{v} \\ \ddot{\delta} \end{bmatrix} \end{align*} u=[uJerkuδ¨]=[v¨δ¨]

  • ( u Jerk u_{\text{Jerk}} uJerk ): Jerk
  • ( u δ ¨ u_{\ddot{\delta}} uδ¨ ): Steering accel

PS: use second order derivative, because integral is more accurate than differential, and these two items is related to comfortable, then minimize u.

在这里插入图片描述

Curvilinear Coordinates Vehicle Model

The so called arc velocity 𝑠 gives a way of describing the vehicles motion along a reference trajectory parameterized by 𝑠.

convert velocity from vehicle coordinate to trajectory coordinate:

[ s ˙ n ˙ z ˙ ] = [ c o s u − s i n u 0 s i n u c o s u 0 0 0 1 ] = [ v x v y v z ] \begin{bmatrix} \dot{s}\\ \dot{n} \\ \dot{z} \end{bmatrix} = \begin{bmatrix} cos_u & -sin_u & 0 \\ sin_u & cos_u & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} v_x\\ v_y \\ v_z \end{bmatrix} s˙n˙z˙ = cosusinu0sinucosu0001 = vxvyvz

a .   v s = v x cos ⁡ ( u ) − v y sin ⁡ ( u ) = ( R − n ) ϕ ˙ s b .   s ˙ = R ϕ ˙ s c .   κ = 1 R d .   v x = v cos ⁡ ( β ) e .   v y = v sin ⁡ ( β ) \begin{align*} & a.\ v_s = v_x \cos(u) - v_y \sin(u) = ({R - n}) \dot{\phi}_s \\ & b.\ \dot{s} = R \dot{\phi}_s \\ & c.\ \kappa = \frac{1}{R} \\ & d.\ v_x = v \cos(\beta) \\ & e.\ v_y = v \sin(\beta) \end{align*} a. vs=vxcos(u)vysin(u)=(Rn)ϕ˙sb. s˙=Rϕ˙sc. κ=R1d. vx=vcos(β)e. vy=vsin(β)

s ˙ = v cos ⁡ ( β ) cos ⁡ ( u ) − v sin ⁡ ( β ) sin ⁡ ( u ) 1 − n κ = v cos ⁡ ( β + u ) 1 − n κ \begin{align*} \dot{s} & = \frac{v \cos(\beta) \cos(u) - v \sin(\beta) \sin(u)}{1 - n \kappa}\\ & = \frac{v \cos(\beta + u)}{1 - n \kappa} \end{align*} s˙=1vcos(β)cos(u)vsin(β)sin(u)=1vcos(β+u)

n ˙ = v x sin ⁡ ( u ) + v y cos ⁡ ( u ) = v cos ⁡ ( β ) sin ⁡ ( u ) + v sin ⁡ ( β ) cos ⁡ ( u ) = v sin ⁡ ( β + u ) \begin{align*} \dot n & = v_x \sin(u) + v_y \cos(u) \\ & = v \cos(\beta) \sin(u) + v \sin(\beta) \cos(u) \\ & = v \sin(\beta + u) \end{align*} n˙=vxsin(u)+vycos(u)=vcos(β)sin(u)+vsin(β)cos(u)=vsin(β+u)

μ ˙ = r − ϕ ˙ s = v R v − k v cos ⁡ ( β + μ ) 1 − n κ = v sin ⁡ ( β ) l r − k v cos ⁡ ( β + μ ) 1 − n κ \begin{align*} \dot{\mu} & = r - {\dot{\phi}_s} \\ &= {\frac{v}{R_v}} - k \frac{v \cos(\beta + \mu)}{1-n\kappa} \\ & = \frac{v \sin(\beta)}{l_r} - k \frac{v \cos(\beta + \mu)}{1-n\kappa} \end{align*} μ˙=rϕ˙s=Rvvk1vcos(β+μ)=lrvsin(β)k1vcos(β+μ)
The motion model is a discretized kinematic bicycle model in curvilinear coordinates.

x ˙ = [ s ˙ n ˙ μ ˙ v ˙ a ˙ δ ˙ δ ¨ ] = [ v cos ⁡ ( μ + β ) 1 − n κ v sin ⁡ ( μ + β ) v sin ⁡ ( β ) l r − k v cos ⁡ ( μ + β ) 1 − n κ a u jerk δ ˙ u δ ¨ ] . \mathbf{\dot{x}} = \begin{bmatrix} \dot{s} \\ \dot{n} \\ \dot{\mu} \\ \dot{v} \\ \dot{a} \\ \dot{\delta} \\ \ddot{\delta} \end{bmatrix}= \begin{bmatrix} \frac{v \cos(\mu + \beta)}{1 - n \kappa} \\ {v \sin(\mu + \beta)} \\ \frac{v \sin(\beta)}{l_r} - k \frac{v \cos(\mu + \beta)}{1 - n \kappa} \\ a \\ \text{u}_{\text{jerk}} \\ \dot{\delta} \\ \text{u}_{\ddot{\delta}} \end{bmatrix} . x˙= s˙n˙μ˙v˙a˙δ˙δ¨ = 1vcos(μ+β)vsin(μ+β)lrvsin(β)k1vcos(μ+β)aujerkδ˙uδ¨ .

where

β = tan ⁡ − 1 ( l r l f + l r tan ⁡ ( δ f ) ) \beta = \tan^{-1} \left(\frac{l_r}{l_f + l_r} \tan(\delta_f)\right) β=tan1(lf+lrlrtan(δf))

is slip angle
( l_f ) is the length from the front of the car to CoG
( l_r ) is the length from the rear of the car to CoG.

在这里插入图片描述

sin ⁡ ( β ) = l r l f , R = l r sin ⁡ ( β ) l f sin ⁡ ( δ f − β ) = R sin ⁡ ( π 2 − δ f ) l f sin ⁡ ( δ f ) cos ⁡ ( β ) − cos ⁡ ( δ f ) sin ⁡ ( β ) = l r cos ⁡ ( δ f ) sin ⁡ ( β ) l f tan ⁡ ( δ f ) − tan ⁡ ( β ) = l r tan ⁡ ( β ) β = tan ⁡ − 1 ( l r l f + l r tan ⁡ ( δ f ) ) \sin(\beta) = \frac{l_r}{l_f} , {R} = \frac{l_r}{ \sin(\beta)} \\ \frac{l_f}{\sin(\delta_f - \beta)} = \frac{R}{\sin(\frac{\pi}{2} -\delta_f)} \\ \frac{l_f}{\sin(\delta_f)\cos( \beta)-\cos(\delta_f)\sin(\beta)} = \frac{l_r}{\cos(\delta_f)\sin( \beta)} \\ \frac{l_f}{\tan(\delta_f) - \tan(\beta)} = \frac{l_r}{\tan(\beta)} \\ \beta = \tan^{-1} \left(\frac{l_r}{l_f + l_r} \tan(\delta_f)\right) sin(β)=lflr,R=sin(β)lrsin(δfβ)lf=sin(2πδf)Rsin(δf)cos(β)cos(δf)sin(β)lf=cos(δf)sin(β)lrtan(δf)tan(β)lf=tan(β)lrβ=tan1(lf+lrlrtan(δf))

  • 27
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值