文章目录
蒙特卡洛方法也称为 计算机随机模拟方法,它源于世界著名的赌城——摩纳哥的Monte Carlo(蒙特卡洛)。它是基于对大量事件的统计结果来实现一些确定性问题的计算。使用蒙特卡洛方法必须使用计算机生成相关分布的随机数,Matlab给出了生成各种随机数的命令,常用的有
rand函数
和
unifrnd
。
一、生成随机数
1.1 rand
rand函数可用于产生由(0,1)之间均匀分布的随机数或矩阵。
Y = rand(n)
返回一个n×n的随机矩阵。
Y = rand(m,n)
或 Y = rand([m n])
返回一个m×n的随机矩阵。
Y = rand(m,n,p,...)
或 Y = rand([m n p...])
产生随机数组。
Y = rand(size(A))
返回一个和A有相同尺寸的随机矩阵。
1.2 unifrnd
unifrnd 生成一组(连续)均匀分布的随机数。
R = unifrnd(A,B)
生成被A和B指定上下端点[A,B]的连续均匀分布的随机数组R。
如果A和B是数组,R(i,j)是生成的被A和B对应元素指定连续均匀分布的随机数。
R = unifrnd(A,B,m,n,...)
或 R = unifrnd(A,B,[m,n,...])
如果A和B是标量,R中所有元素是相同分布产生的随机数。
如果A或B是数组,则必须是mn…数组。
1.3 联系与区别
相同点:
- 二者都是利用rand函数进行随机值计算。
- 二者都是均匀分布。
【例】在区间[5,10]上生成400个均匀分布的随机数。
不同点:
- unifrnd是统计工具箱中的函数,是对rand的包装。不是Matlab自带函数无法使用JIT加速。
- rand函数可以指定随机数的数据类型。
二、引入
2.1 引例
为了求得圆周率 π 值,在十九世纪后期,有很多人作了这样的试验:将长为 l l l 的一根针任意投到地面上,用针与一组相间距离为 a ( l < a ) a( l<a) a(l<a)的平行线相交的频率代替概率P,再利用准确的关系式: p = 2 l π a p=\frac{2l}{\pi a} p=πa2l ,求出 π 值。(布丰投针)
注意:当针和平行线相交时有,针的中点x与针与直线的夹角φ满足 x ≤ 1 2 s i n φ x≤\frac{1}{2}sinφ x≤21sinφ
l = 0.520; % 针的长度(任意给的)
a = 1.314; % 平行线的宽度(大于针的长度l即可)
n = 1000000; % 做n次投针试验,n越大求出来的pi越准确
m = 0; % 记录针与平行线相交的次数
x = rand(1, n) * a / 2 ; % 在[0, a/2]内服从均匀分布随机产生n个数, x中每一个元素表示针的中点和最近的一条平行线的距离
phi = rand(1, n) * pi; % 在[0, pi]内服从均匀分布随机产生n个数,phi中的每一个元素表示针和最近的一条平行线的夹角
% axis([0,pi, 0,a/2]); box on; % 画一个坐标轴的框架,x轴位于0-pi,y轴位于0-a/2, 并打开图形的边框
for i=1:n % 开始循环,依次看每根针是否和直线相交
if x(i) <= l / 2 * sin(phi (i)) % 如果针和平行线相交
m = m + 1; % 那么m就要加1
% plot(phi(i), x(i), 'r.') % 模仿书上的那个图,横坐标为phi,纵坐标为x , 用红色的小点进行标记
% hold on % 在原来的图形上继续绘制
end
end
p = m / n; % 针和平行线相交出现的频率
mypi = (2 * l) / (a * p); % 我们根据公式计算得到的pi
disp(['蒙特卡罗方法得到pi为:', num2str(mypi)])
由于一次模拟的结果具有偶然性,因此我们可以重复100次后再来求一个平均的pi,这样子得到的结果会更接近真实的pi值。
result = zeros(100,1); % 初始化保存100次结果的矩阵
l = 0.520; a = 1.314;
n = 1000000;
for num = 1:100 % 重复100次求平均pi
m = 0;
x = rand(1, n) * a / 2 ;
phi = rand(1, n) * pi;
for i=1:n
if x(i) <= l / 2 * sin(phi