Haar 特征训练步骤详

本文详细介绍了使用Haar特征进行训练的步骤,包括准备样本、制作样本描述文件、训练分类器和生成XML文件。通过手动处理和使用OpenCV工具,实现了从正负样本图片到最终的面部检测分类器的创建。文章强调了关键操作,如正负样本的处理、.dat和.vec文件的转换,并提供了相关资源链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、准备样本阶段

事先准备好正样本和负样本。这里只是先用于做Haar特征训练步骤的熟悉用,所以用opencv写了个程序,主要是做图片的变形处理。如旋转和亮度调节等。当然最后检测的效果指定很不好,这里先作为步骤熟悉来用的。

我们首先取出一幅图片(以交通标志为例),可在网上下载,然后通过程序,在对这幅图片进行亮度调节和旋转后,得到700多张图片(图片格式设置为bmpjpg)。我们取出其中的245幅图片作为本次的训练正样本。然后通过这个程序,有设置批量生成负样本的功能,总共从一张大图片中随机抠出700张负样本图片。这里,由于是事先用程序写好的,所以,正样本和负样本的大小均为50*50

程序如下图所示:

 

这是正负样本的程序截图,最后得到如下的结果:



说明一下,根据网上查到的资料,这里最好用灰度图进行操作,所以最后生成的都是8位深度的灰度图。大小统一为50*50

 

二、正负样本样本描述文件的制定

    因为这里我们正样本是用程序自写的,所以不用直接在文档里改大小,而没有进行标定,实际上,我们需要用objectmaker进行标定,具体使用可自行上网查。

    这里用到的是opencv自带的一个程序,叫做opencv_createsamples.exe,具体在opencv下的bin里。

把上面的posneg文件夹里的正负样本,还有opencvopencv_createsamples.exe放到一个文件夹

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值